Improving Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

Sam Talaie

This project is partially supported by the USGS and builds on previous work done by Sushil J. Louis, Gary L Raines, Ryan E. Leigh

Genetic Algorithms

o Developed by John Holland o Natural selection survival of the fittest o Natural genetics o Used when problems are poorly defined, hard. o Multimodal o Discontinuous o Non-linear

	and the second
Robotics	How do we catch a ball, navigate, play basketball
User Interfaces	Predict next command, adapt to individual user
Medicine	Protein structure prediction, Is this tumor benign, design drugs
Design	Design bridge, jet engines, Circuits, wings
Control	Nonlinear controllers

Genetic Algorithms

- o Solutions are encoded as binary chromosomes
- o A set of operators acts on a population of chromosomes to evolve better solutions
 - o Selection
 - o Crossover
 - o Mutation

 O Quickly produces good (usable) solutions
 O Not guaranteed to find optimum

Searching for Optima

o Searching for optima

 o Traditional Methods
 o Calculus
 o Depend on existence of derivatives
 o Most real-world functions are not
 unconstrained, smooth, calculus friendly
 functions.

 o Hill Climbing

 o Fails when reaches local optima

Search as a solution to hard problems

- o Strategy: generate a potential solution and see if it solves the problem
- o Make use of information available to guide the generation of potential solutions
- o How much information is available?
 - o Very little: We know the solution when we find it
 - o Lots: linear, continuous, ...
 - o Modicum: Compare two solutions and tell which is "better"

Algorithm

o Generate pop(0) o Evaluate pop(0) 0 T=0 o While (not converged) do o Select pop(T+1) from pop(T)o Recombine pop(T+1) o Evaluate pop(T+1) O T = T + 1o Done

GA – Evaluation

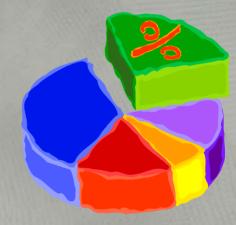
Application dependent fitness function

GA - Selection

Each member of the population gets a share of the pie proportional to fitness relative to other members of the population

o Spin the roulette wheel pie and pick the individual that the ball lands on

o Focuses search in promising areas



Crossover and Mutation

Mutation Probability = 0.001

Insurance

Xover Probability = 0.7

Exploration operator

GA – Exploration vs. Exploitation

More exploration means
 o Better chance of finding solution (more robust)
 o Takes longer

 More exploitation means
 Less chance of finding solution, better chance of getting stuck in a local optimum
 Takes less time

GA - Example

String	decoded	f(x^2)	fi/Sum(fi)	Expected	Actual
01101	13	169	0.14	0.58	1
11000	24	576	0.49	1.97	2
01000	8	64	0.06	0.22	0
10011	19	361	0.31	1.23	1
Sec. Sec.					
Sum		1170	1.0	4.00	4.00
Avg		293	.25	1.00	1.00
Max		576	.49	1.97	2.00

GA - Example

String	mate	offspring	decoded	f(x^2)
0110 1	2	01100	12	144
1100 0	1	11001	25	625
11 000	4	11011	27	729
10 011	3	10000	16	256
Sum				1754
Avg				439
Max				729

Research

A harmonious marriage between

Cellular Automata

Genetic Algorithms

What is the project about?

o What is the problem? o Calibrating a CA o What is the technique? o Genetic Algorithm o What are the issues? oEncoding oEvaluation • What are our results ?

Problem

o Project mineral-related activity on public land to 2010

- o Predicting permit activity in an area oSpatially explicit
 - oUSGS

o permit activity from 1989 – 1998 o natural resources

oUse cellular automata to model (predict) mining activity over next ten years

o Problem: Takes weeks to tune CA rules to match available data

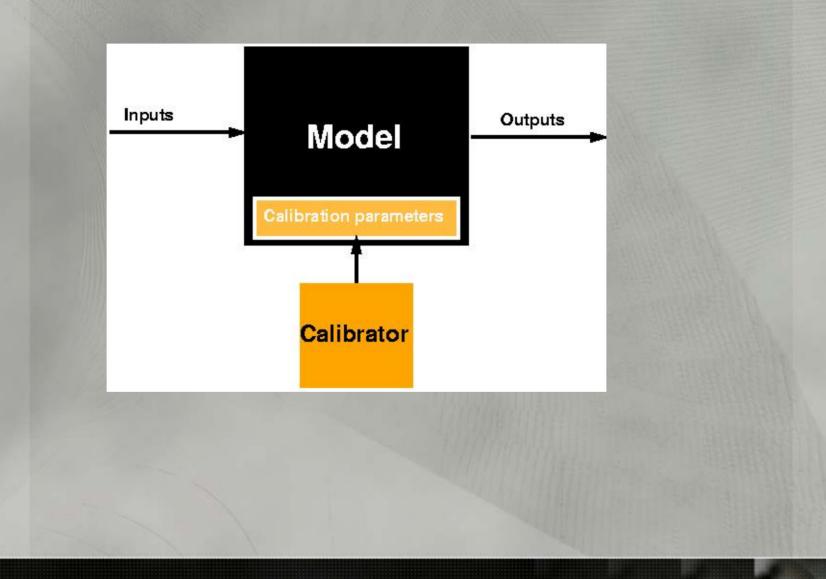
Problem

 Can we automate calibrating a cellular automaton

o As good as CA calibrated by human

o In the same or less time

Problem



Model Parameters

o 496 X 503 = 249,488 cell CA

o 5 years (iterations)

o Average over 3 runs

o Roughly 4 Million computations.

GA Calibration

o Empirical evidence to support their use in this kind of problem

o Physics models

o Physical Review Letters, Volume 88, Issue 4

o Journal of Quantitative Spectroscopy and Radiative Transfer. Volume 75, 2002, Pgs. 625 -636

o Seismic models

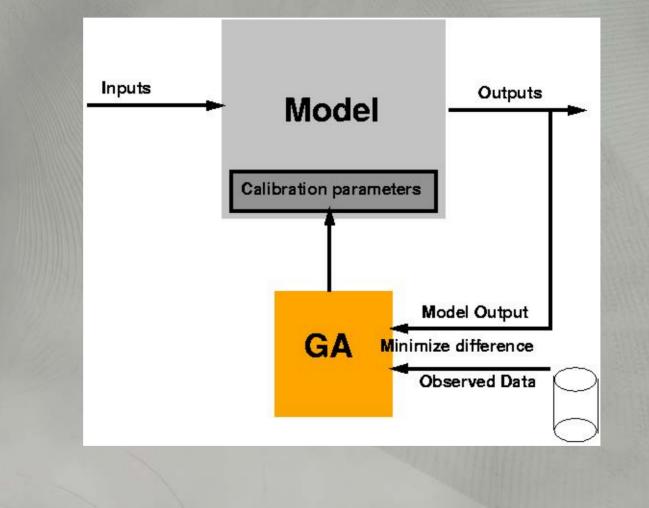
o Congress on Evolutionary Computing 1999, pages 855 - 861

o Hydrology models

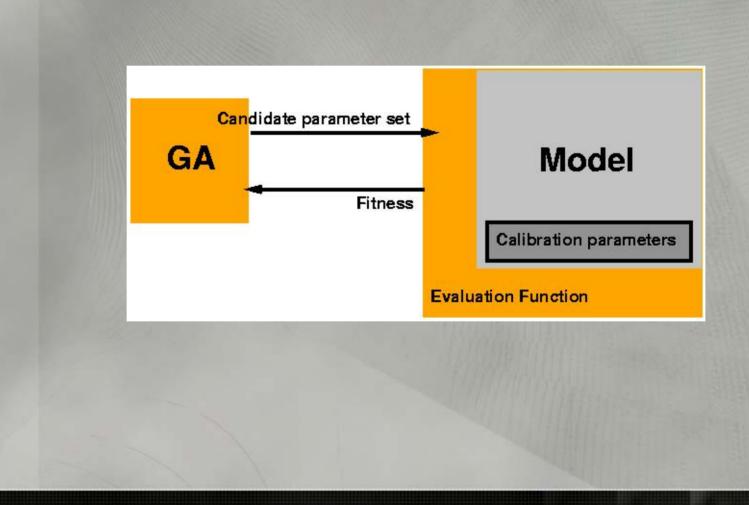
o In progress

o Proceedings of GECCO, CEC, ...

GA Calibration



GA Evaluation



Modified Annealed Voting Rule Probability of Life in Next Generation

	Status of Center Cell			
Number of Live Neighbors	Alive	Dead		
> Annealing Window	Very Likely	Likely		
Annealing Window	Likely	Somewhat Likely		
< Annealing Window	Very Somewhat Likely	Unlikely		

CA Parameters

Parameters	Definition
Very Likely	Square root of Likely (Larger)
Likely	A high probability of life.
Somewhat Likely	An intermediate probability of life
Very Somewhat Likely	Square root of Somewhat Likely (Larger)
Unlikely	A low probability of life
Resource Threshold	Minimum fuzzy membership defining where a reasonable explorationist would explore
Anneal Window	Position and width control response of CA

GA Encoding

top	Bottom	likelyInactive	likelyActive	veryLikely	somewhatLikely	verySomewhatLikely	unlikelyProb	ResourceThreashold
4	4	7	7	7	7	7	7	7

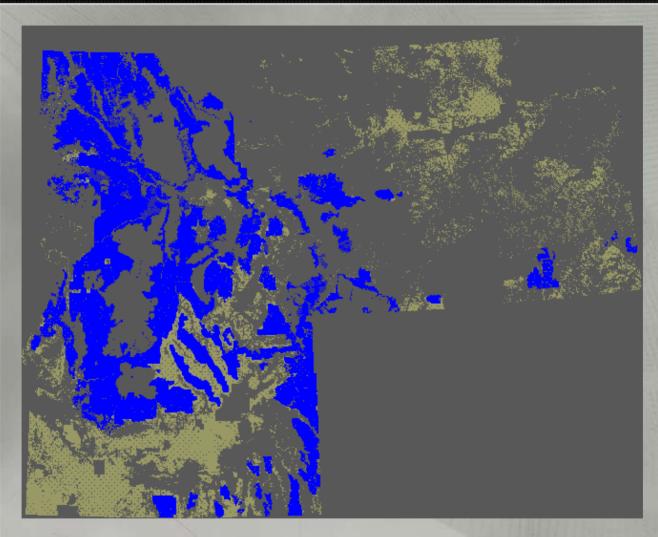
CHC Benefits

o Outperforms traditional GA as function optimizer

o Smaller population size needed to maintain same diversity as traditional GA

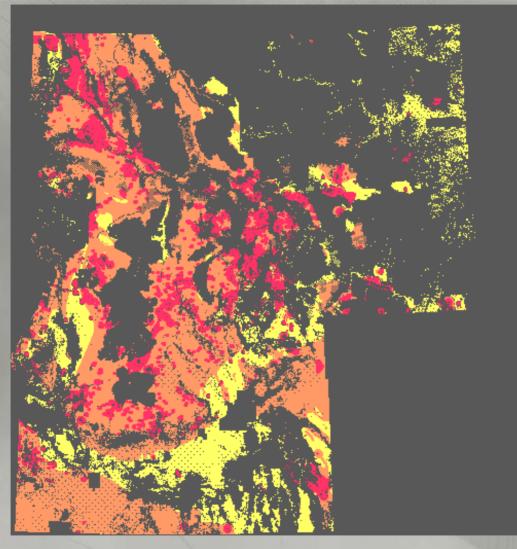
o Very effective for parameter optimization (Darrel Whitley)

Visualization of Data



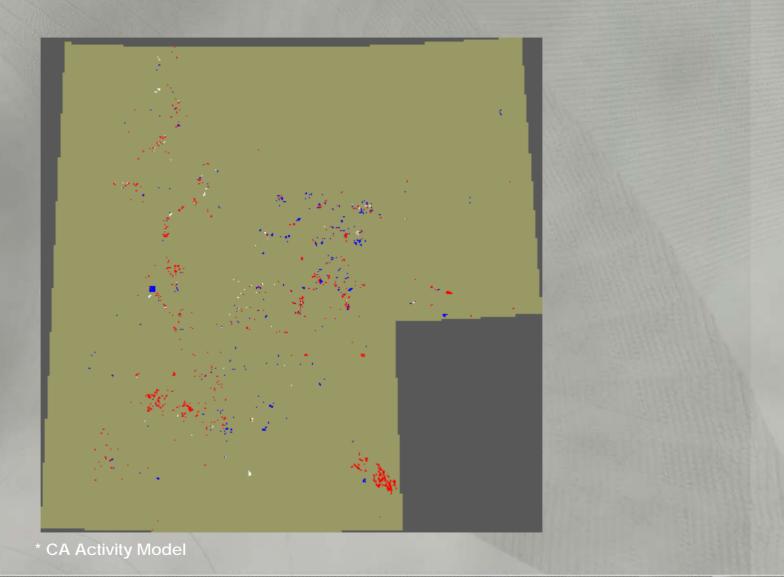
* Public Land

Visualization of Data



* Resources

Visualization of Data



Evolution of the project

o TCSC: Total Cell State Count

Minimize
$$g = \sum_{j=0}^{\text{nyears nstates}} \left(100 \times \frac{|M_{ij} - O_{ij}|}{M_{ij} + O_{ij}} \right)$$

Mij : predicted number of cells in state i in year j
Oij : actual number of cells in state i in year j
4 Types of Cells:

Alive
Dead
Just Born
Just Died

Evolution of the project

o Kappa statistic

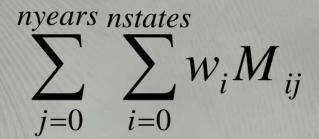
o Kappa is a measure of agreement normalized for chance agreement

$$K = \frac{P(A) - P(E)}{1 - P(E)}$$

 Where P(A) is the percentage agreement (e.g., between your classifier and ground truth) and P(E) is the chance agreement. K=1 indicates perfect agreement, K=0 indicates chance agreement.

Evolution of the project

 NSCP: Number of Spatially Correct Predictions



o Mij : NSCP in state i in year j o wi : weight of state i

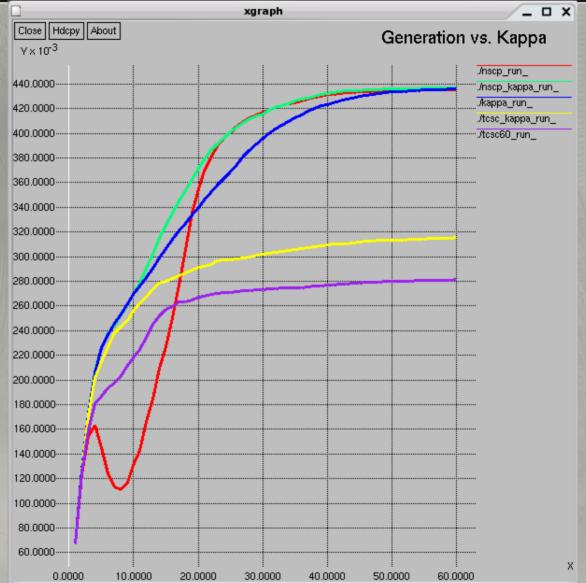
Results

o Different Evaluation methods tested
 o Population : 60
 o Generations : 60
 o Crossover Rate : 0.99
 o Mutation : 0.05
 o Runs : 10 with different seeds

o 4 Million Computations * 60 * 60 =

- o 14.4 Billion Computations
- o On average, 0.3 seconds / evaluation

Results



Results

Kappa results for fitness defined by
 o TCSC
 o Avg : 0.2814

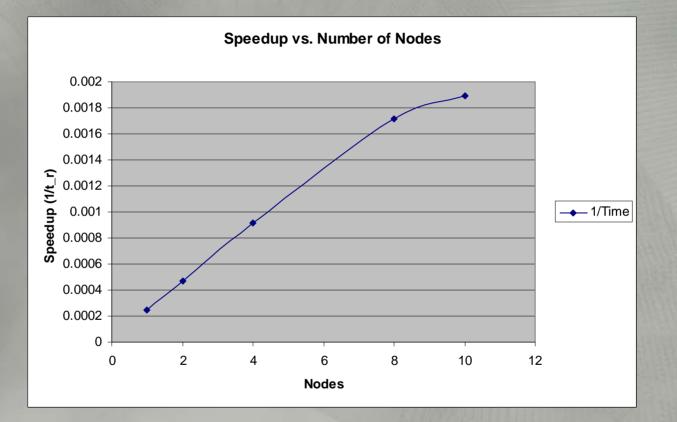
o **Kappa** o Avg : 0.4362

o TCSC and Kappa o Avg : 0.3154

o **NSCP** o Avg : 0.4356

o NSCP and Kappa o Avg : 0.4366

Parallel GA



Conclusion

o 0.437 = Absolute Barrier

o Using Kappa Statistic in evaluation improves performance in both NSCP and TCSC

o Using NSCP results in reaching higher Kappa values more quickly

o Unfortunately NSCP was not able to break the 0.437 barrier

Future Work

o Evolve different rules for different sub-regions of the grid

o Encode and evolve rules instead of just rule parameters

o Explore different measurements of "success"

o Visualize Results