
Cohort Genetic Algorithms

Based on “Building Blocks, Cohort Genetic 
Algorithms, and Hyperplane-Defined 

Functions” by John H. Holland

presented by Jeff Wallace
CS 790R



Review: GA Crossover

Parent genomes recombine to form 2 new 
genomes
Crossover point(s) determined at random

Parents Children



Review: GA Mutation

Random gene mutates with (low) 
probability

Before After



Review: Selection

Roulette-wheel selection determines parents 
of next generation

Score Norm
p1 60 .504
P2 33 .277
P3 19 .160
p4 7 .059

1
2
3
4



Review: Basic Algorithm

choose initial population
repeat

evaluate each individual's fitness
select best-ranking individuals to reproduce 
mate pairs at random 
apply crossover operator 
apply mutation operator 

until terminating condition 



Schema
aka similarity templates
describes how strings are similar at specific positions
uses wildcards (‘*’) to describe parts of the template 
that are not relevant
e.g. *111* describes {01110, 01111, 11110, 11111}
“order” is the number of fixed positions

high order is more specific/defining than low order
“defining length” is the distance between the 
first/last fixed positions
schemata aka hyperplanes
USEFUL schemata are “building blocks”



Schema Theorem

short, low-order, above-average 
schemata receive exponentially 
increasing trials in subsequent 
generations.
corollary: below-average schemata 
receive exponentially fewer trials in 
subsequent generations.



Genetic Algorithms

number of schemata manipulated is much 
larger than the number of strings explicitly 
processed (~n3 , n=pop size). aka “implicit 
parallelism”
not good for finding best individual
not best approach for highly correlated 
landscapes
good for finding improvements in 
uncorrelated landscapes



Problem with Basic GA: 
Hitchhiking

bits that are near useful building blocks 
tend to persist by virtue of proximity —
not utility. 
hitchhiking loci tend to be under-
explored.
solution: scale reproduction rate for 
best string downwards (toward 1.0)



Problem with Hitchhiking 
Solution: Fractional Offspring

e.g. best string = reproduction rate of 1.2
second offspring created with p = 0.2
after 4 generations, expect to find 2 copies 
of individual (1.24 = 2)
variance is large, however. The probability 
of only one copy is 40%, meaning that 
useful schemata are lost.



Solution to the Problem of the 
Solution: Cohort GAs?

designed to allow low scaling of 
reproduction rates without high 
variance caused by stochastic approach 
to fractional offspring
idea: fitness determines how long a 
string has to wait before reproducing

higher-fit strings reproduce more quickly, 
thus having a higher number of progeny 
over time.



Cohort GA Implementation

divide population into ordered set of 
non-overlapping subpopulations 
(cohorts)
Reproduction function cycles through 
cohorts (in order)



cGA Reproduction (within 
cohort)

each string produces 2 offspring
each string is evaluated and scaled to low 
reproductive rate (e.g. 1.2). Average 
reproductive rate = 1.0
calculate doubling time* (DT) at this 
reproductive rate (e.g. =4 @ 1.2). 
* at low rates, a linear function may be used
place this offspring in the cohort DT steps 
“ahead” of current cohort.



cGA Tweaks

cohorts will contain different pop sizes.
mating produces 4 offspring (2 each parent)
if population bounded, strings must be 
deleted. You want to delete low-fitness 
strings without emptying distant cohorts
preserve diversity by scaling fitness according 
to commonality. Common alleles reduce 
fitness. Unique alleles increase it. 



Issues

biological analogue?
why doesn’t downscaling fitness of 
common alleles punish strong building 
blocks?
reduces premature convergence, but 
this isn’t always desirable.


	Cohort Genetic Algorithms
	Review: GA Crossover
	Review: GA Mutation
	Review: Selection
	Review: Basic Algorithm
	Schema
	Schema Theorem
	Genetic Algorithms
	Problem with Basic GA: Hitchhiking
	Problem with Hitchhiking Solution: Fractional Offspring
	Solution to the Problem of the Solution: Cohort GAs?
	Cohort GA Implementation
	cGA Reproduction (within cohort)
	cGA Tweaks
	Issues

