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When we last read about 1D CA

* Line 1 as a single black
square for two-color CA

* Also, totalistic CA

— Rules concern averages of
neighbor cells

— 2187 unique totalistic CA
rules
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— Others will not (below)




Four broad classes “discovered’

 Informatively, these classes are named by
sequential integers

— 1: Solid state from all or almost all cond.

— 2: Converge to stable or short-period repeat forms ( where
the “vertical lines” distribute will vary by Line 1's)

— 3: “[In] many respects random, though triangles & other
such small-scale structures are essentially always at
some level seen” (Huh?)

— 4: A mixture of order and randomness (as opposed to 3...)
« Simple local structures that move and interact
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‘_‘Bare borderllne automata

The:'"ébove are tota |st|c nearest-nelghbor 3 color CA

“[W]ith almost any general classification scheme there
are inevitably borderline cases which get assigned to
one class by one definition and another class by

another definition”

— If definitions for each class aren’t mutually exclusive or have
2 or more criteria, is it really still a general classification
scheme?

— Why wouldn’t one replace this ARBITRARY scheme with
phylogenic-tree clustering, Eisen clustering, local and/or

global similarity scores, statistics estimating degree of order,
or ANYTHING BUT OUT OF A HAT. n=2187 is all




Start condition sensitivity
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Sensitivity reveals how

each type handles R R i
information S Hini i R : ::: :::: E ::
t=insensitive (information L R
beyond their rules is )
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2= new mildly-different local
change (local “interactions”

only)

3=systemic propagation

The effect of changng the color of a single cell in the initial condtions for tepical callular autarmata from gach of the

(Iong-range propaganon Of four classes wentified in the previcus section. The bledk dots indicate all the cells that change. The way that auch

changes behavae is charsctenistically differant for each of the four clesses of systems.

even the smallest
differences)

A single cell (Line 1, black dot) is changed in init. conds
4= sporadic (“intermediate,”
can go either transient-local ~ Black dots= all changed cells
or wide



Class 2 systems as systems of
limited size

* Eventually repetitive

(recall: stripes or short
period patterns)

* No long-range
communication

* Acting just
like these

1 dot / line

Dot moves n spaces in each next line
Period is dependent on n and size
Max(period)=11 here
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"Randomness’ in class 3 CA

* Degrees of * Rule 22:
‘randomness’ « can go nested

— Rule 30: “random” for * Can also be re- ”
ordered starts too (but perturbed into “random
1 9y = . . P Wov
random” in a similar %%‘*’a
way? How “random” is 24

that?

Comparson of the pattems produced by the rele 30 cellular avtomaton starting from random initial condibons and from simple

initia! senditions immhang just a singla Black call. Away from tha sdgs of the secend pisture, tha pattarns look remarkably similar
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Special starting conditions

« Ex. Rule 30 has handful of conditions inducing order
* Repeated blocks in line 1 function like systems of limited

— Periods are Rule- and block-dependant (obvious?)...also
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Randomly- |n|t|ated CA as Attractors
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 Line 1 has 2" possible
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successive iterations
— Rephrase: consider the

potential “degeneracy” 'f:ni:!':f A,

among some subset of

the 2" line 1 states, ~~ | lo—0 AN

“coding” for the same QO Sy i O‘“‘y v A Examples:
line 2, forming basins of = — = Class 3&4

attraction for their
common product, many
lines




Structures in Class 4

TR Cies

* Some persistent
structures

3 cola del-eacis! saigbbors, code 2

3 Sodis, NEdasT nepibara cod SR

T oo, neumet saighbory, cons TI99

Threa typical examples of cless 4 cellular automsta. In each case varous kinds of parsistent structures are seen.



Class 4

IN

Structures

 Persistent structure can be hard to

lass 4

come byinc

— Complete search for Code 20 from 2.5 x

1070 possible setups finds only 10.

callular a

ha goda 20
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found by tasting the
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Chapter 6 Conclusions

* 4 broad classes of rules are described for
randomly-initiated CA, by structure
features, with few borderline cases

* Most CA progressively shrink possible

line states: can be described as attractor
networks



Ch 8: Modeling “things” with CA

* QOutline
— On modeling
— Crystal and snowflake models
— Fractures and breaking of materials
— Fluid flow
— Claims regarding evolution and CA
— Plant growth
— Animal growth
— Finance



On modeling

 Are models as made in the current mode
flawed?

* Must a model share characteristics with
the observed phenomena?



Crystals and snowflakes
* Crystal CA

— Assume hexagonal cell
arrangements

— Program: cell -> black if < ¢ ‘® @ @
any neighbor = black
— Insert black cell seed...

« Snowflake CA

— Enthalpy of fusion
modeled by

— cell -> black if exactly 1
neighbor was black in
the previous time-
iIncrement




Breaks and Fractures

* Fracture propagation
IS conserved for

— Scaleless?: geological
events and small
objects share gross
pattern

— Conserved among
wide range of solids
and composition?

CA model: at each step, CA-rules used to
update cells, where the black dot, as leading
crack point follows displacements as they
“shake.”
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* Wolfram describes fluid that flows past

an object, where acceleration-> flow >
eddies pair spirals > periodic break of
eddies into wake > further turbulence
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Wolfram vs.natural selection

 Basic claim: complexity in|__| I
biology spontaneously
occurs all the time as a
property of all things (its
unclear)

— Also, natural selection
somehow suppresses
complexity

— Pigmentation pattern
aberrations are rarely or
never deleterious Apparently this set of rule-mutating automata

_ Apparently, selection is an disproves natural selection.
optimization algorithm
“But if complexity is this easy to get, why is it not even more widespread in biology? For
while there are certainly many examples of elaborate forms and patterns in biological
systems, the overall shapes and many of the most obvious features of typical
organisms are usually quite simple. “ THIS IS COMPLETELY WRONG




Plant growth patterning

* lterative branching .,szg\
algorithm L el

* NetLogo demo

* |terative processes | |
may explain “golden
ratio” spirals seen in
plants

— | do not follow his
iInaccurate plant
biology




Animal growth

* Mollusk procedural
shell growth is

modeled well

« As |l read it, he

J

claims that “folding’
and (hand-waving)
size-mediate

organogenesis?




Financial systems

« Can CA
explain
volatility in
markets?
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