Complexity in Biological Signaling Systems

Weng, G.¹, Bhalla, U. S.², Iyengar, R.¹ ¹Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029, USA ²National Center for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, India

2 APRIL 1999 VOL 284 SCIENCE

Presented by Christine J. Wilson CS 790R Complex Systems Dr. Doursat April 12, 2005

Biological Signaling Systems

- Signaling in biological systems occurs at multiple levels.
- Signaling can be another way to describe communication
- In this paper, focus is on interaction within a single cell – intracellular signaling within a cell

Complexity

- Large number of components
- Connections among components
- Spatial relationship between components

Complexity in Physical Systems

Complexity factors

- the number of components and the intricacy of the interfaces between them,
- the number and intricacy of conditional branches,
- Othe degree of nesting, and
- ○the types of data structures

Complexity in Biological Signaling

 In addition to the factors present with physical systems, biological signaling systems also incorporate

ODynamic assembly

OTranslocation

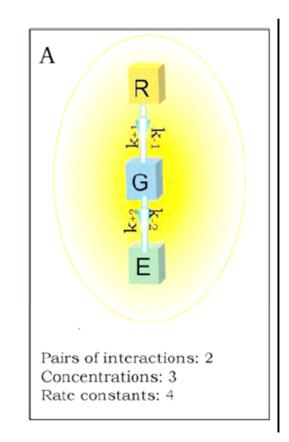
Object to Degradation

Ochanneling of chemical reactions

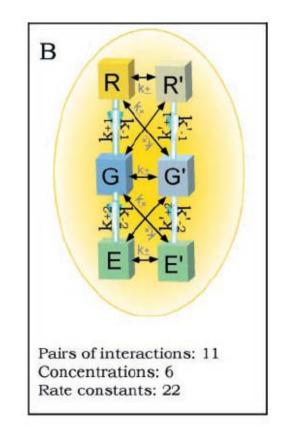
Complex Behavior of Signaling Networks

 One approach to understanding complexity is to start with a conceptually simple view of signaling and add details that introduce new levels of complexity

Simplest View


- Homogenous well-stirred cell where all molecules have equal access to each other
- Bacterial two-component signal transduction is one example of such a system: a simple three-component transmembrane signaling system

A Signaling Wire


 Properties of this system are completely determined by the concentrations of each of the components and the reaction rates

 Each pathway can be thought of as a wire carrying information

Next Layer of Complexity

- Now add interconnections that only occur between two adjacent components
- Even though the system has been simplified, such simplification often reflects the specificity in interactions between pathways
- Experimentally, a system of this size can be quantitatively analyzed
- Can be analyzed using a computer model

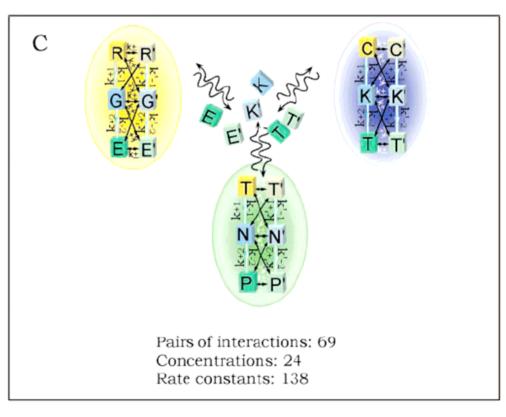
Simple Model

- Using GENESIS, a simplified network consisting of four different interacting signaling pathways displayed the following emergent behavior
 - Integration of signals across different time scales
 - Generation of distinct outputs depending on the amplitude and duration of the input signals
 - Presence of feedback loops that behave as bistable switches to process information flow

Additional Modeling Considerations

 While there exists emergent complexity in the GENESIS model, it suggested that additional considerations were necessary to develop a minimally accurate picture of a living cell:

Compartmentalization


ORegional organization

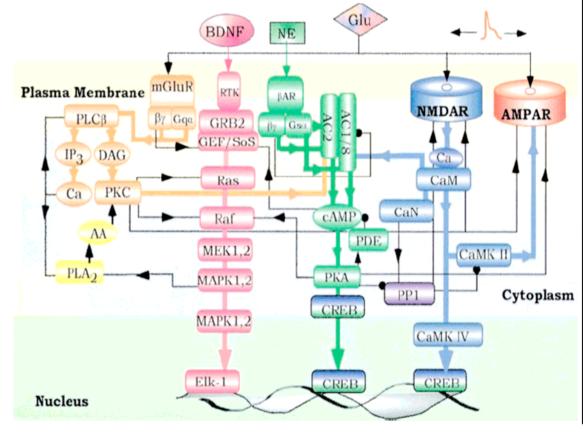
Compartments

- The compartment introduces space and multiplies the number of signals that any given molecule can carry in the system
- Experimental data at the compartment level is difficult to obtain
- The number of parameters needed to accurately model the system becomes large quickly

Simple Compartment Model

- Three compartment system with six translocatable components
- Compartmentalization duplicates existing wires and separates them in space, thus multiplying the number of signals they can carry

Regional Organization


- Molecular scaffolds
- Cytoskeleton is a dynamic framework on which the cell builds this regional organization
- A prime example of its dual role is the synapse
 - Pre- and postsynaptic structures are the anchors for a wide array of synaptic signaling molecules

Scaffolds

- The term "scaffold" is also used for a new class of signaling proteins that do not have information transfer capability of their own but interact with multiple signaling proteins in a pathway.
- The scaffold provides an assembly line along which a series of enzymes process their substrates in a well-defined sequence and with an efficiency and specificity that are orders of magnitude higher than would be possible in a freely diffusing system

Regional Signaling

- Four interacting pathways in the postsynaptic region of a neuron
- Signaling components can translocate between the plasma membrane and cytoplasm and similarly between the cytoplasm and nucleus

Cytoskeleton and Compartments

- Both the cytoskeleton and compartments have a dual role in cell assembly and signaling role
- The system is self-modifying, dependent up on its situation (temporal, environmental dependencies)

Regulation in the Nucleus

The genetic machinery

- OEnzymes
- Compartments
- OTightly controlled signal trafficking
- OGigabyte-sized program written in the DNA
- The balance between intrinsic capability and the response to external signals is likely to be a central issue in understanding gene expression

Why Study Signaling?

 How does a developing organism start from a single cell and divide and differentiate into many different classes of cells?

- Emerging data point to signaling interactions that are genetically programmed
- Cater development is dependent upon external input in addition to the "programmed" input

Analyzing a complex system

- Tightly coupled experiments and theory
- A move toward a more quantitative understanding of biology
- Access and creation of a database and tools to integrate these data would be necessary and a large project in itself

Understanding Complex Signaling Networks

- Understanding the origins of many human diseases that rely on the proper function of signaling components
- By unraveling the many combined interactions, the individual components and their contributions to the entire system can be understood
- May provide a molecular view of an individual's interaction with its environment