Animal pigmentation patterns from
CA and PDE
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Biological pigment
patterns are complex.

This implies some

complex underlying

generation mechanism,

rl ght ° Wolfram, NKS p. 423
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.. . one notices the remarkable fact
that the range of patterns that occur in
the two cases 1s extremely similar.”
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Those are 1-D CA examples;
most animal patterns are 2-D

Clusters of cells develop, where cells
tend to be same as average of nearby
elements and opposite to average
color of elements further away:

local activation, long range inhibition



It would be nice 1f our
models for pigmentation
pattern formation accounted
for a variety of patterns
(stripes, spots, solid colors)

with one mechanism

Bar-Yam, p. 628




This problem of pigmentation 1s a
subset of a more general and
fundamental biological problem:
differentiation



Differentiation:
a fundamental problem of biology

Requires formation of cells with different properties out of
initially homogeneous, undifferentiated cells (and later, creation
of specific structures that support interconnection of these
regions of different purpose)

For animal pigments, this problem reduces to “just” creation of a
spatial pattern in a 2D surface; more generally, 1t could be a

spatio-temporal pattern in some other substrate

Is pigmentation a model for general physiology?



Bar-Yam begins by considering abstractly
what tools are available to biology that
might be used 1n pattern formation

Cell + environment -> phenotype

DNA 1is not a blueprint
More like a program, with environment as data

“DNA 1s not itself a complex organism” only the
embodiment 1s, the complex set of temporal protein
construction machines in the environment



Generally, we human engineers find that creating
dynamic processes that lead to consistent results 1s
very hard (unless the processes are deterministic).



“Seeds” of pattern formation

Antiferromagnet on square lattice sort of similar--
but that has no characteristic length scale, as do biological
pigment patterns

How get a length scale? Some long range effect 1s needed

Chemical emission into extracellular space 1s a natural
candidate: chemicals diffuse over distance

Ising model: interacting binary variables, “simplest CA”



Magnetic domain formation analogy

Pigmentation patterning i1s somewhat similar to real
magnetic materials which form “domains” with
some length-scale:
local activating quantum effect 1s activating
longer distance alignment effect 1s
antiferromagnetic (inhibiting)



Local activation, long range inhibition
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The parameters are ;= 1. £, =6, Jy= 1. L =-0.1. an
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Stability

These are equilibrium patterns.

Changing the 1nitial fraction of on/off cells doesn't change
final result very much qualitatively, since the end result 1s
an equilibrium with similar gross patterns, but the precise
final state 1s quite sensitive to the specific initial
arrangement.

This 1s the goal of a stable (end result) dynamic process!



Ergodic theorem

and patterns in equilibrium (question 7.2.1)

Ergodic theorem: “Closely related to the discussion of fast coordinates is the
ergodic theorem. The ergodic theorem states that a measurement performed on a
system by averaging a property over a long time is the same as taking the average

over the ensemble of the fast coordinates. This theorem 1s used to relate
experimental measurements that are assumed to occur over long times to

theoretically obtained averages over ensembles. The ergodic theorem is not a
theorem in the sense that it has been proven in general, but rather a statement of a
property that applies to some macroscopic systems and is known not to apply to

others. The objective is to identify when it applies.” (p. 90)



Patterns in equilibrium?

Bar-Yam points out that the presence of patterns in
equilibrium may appear to contradict an earlier
result. In fact, 1t does not for several reasons (lack
of thermal fluctuations, inapplicability of ergodic
theorem, presence of correlation length large
relative to system size).



But . . . activation-inhibition alone
doesn't capture much of the variation
seen 1n real animals

Perhaps a CA model
that grows out from a
set of starting points
might work better?




First attempt

Grow outward from a set
of 1nitial points
Turn cell on 1f there are
some, but not too many on
neighbors
Never turn off once on

Results . . . not good yet

Bar-Yam Figure 7.2.9



Next attempt

Extend the inhibitory region to larger area than just neighbors.
Looks better, but shapes are still not quite like those of giraffe—they are too irregular.
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R3=12.0 Rp=1.0 h=-125

Starting with a more

regularly spaced 1nitial

grid of points (perhaps

created from activation-
inhibition) results in even

more giraffe-like results

Bar-Yam Figure 7.2.11



Chemical diffusion models
(Bar-Yam 7.2.3)

Random walk distance from origin of thermally jostling molecule is
proportional to sqrt(Dt). This suggests exploring patterns generated
by evolution of molecular density.
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Diffusion leads to movement of molecules toward
smoothing of densities. So how can this result in
patterns’?

Answer: through several kinds of interacting molecules.
Interactions affect local densities.

Particularly important are situations where a reacting molecule 1s also
a catalyst that speeds a reaction (autocatalysis).



Chemical reactions
(Bar-Yam 7.2.4)

dn; (x:1)
dt

=DV n; (x:t)+ R, ({n; (x:0)})

The R term represents changes in concentration due
to chemical reactions.

R 1n turn depends on concentrations (why?)



Chemical reactions

“reaction 1s proportional to probabilities of
encounters between reagents” e.g.

~Nn n
A B

“thus reactions give rise to differential equations
coupling the densities of the different molecules”



Chemical reactions

Stoichiometric considerations for a proposed
reaction give something like:

A=

B —0

SALT) 5 9A +B activator-inhibitor system
9A+C — 3A+C

C+Be |

A—1

0B activator-substrate system



Chemical reactions
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Patterns arising from reaction-
diffusion

Ultimately, the source of patterns may be same as with CA: short
range activation, long range inhibition.

The differential equation version has the advantage of obscurity.

The long range inhibition 1s actually accomplished via diffusion; the
PDE form shows this directly.



Substituting the reaction terms 1nto the basic

diffusion equation and simulating gives us:
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Simulating? How?

Basically, by conversion from differential equations
to discrete-time difference equations.



More results, with different reaction constants

inhibitor, B

Bar-Yam 7.2.14

activator, A




substrate
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A model variant that produces stripes

Bar-Yam 7.2.16



In summary,

(14

... we see that the conditions under which patterns can be generated
include cases where there are two types of molecules, one diffusing
rapidly and the other slowly. The slow diffuser A autocatalyzes a
reaction that increases its own density. The fast diffuser B reacts with
the slow diffuser and decreases the density of A in the vicinity of a
high-density region of A. This results in patterns like that of the
activation-inhibition CA model in the previous section. The primary
difference between the two sets of differential equations is that the
fast diffuser B acts to inhibit in two distinct ways, in the activator-
inhibitor system through its presence, and in the activator-substrate
system through its absence (depletion).” (Bar-Yam p. 669)



Final thoughts

Finite difference form of PDE is a CA. In the basic, original CA actions were

longer-range and cells were binary. In the difference equation form actions are

nearest-neighbor only and cell sites encode multiple real numbers representing
concentrations. (Bar-Yam p. 667)

“Diffusion in the absence of reactions causes the density to become uniform and
patterns are not possible.” (Bar-Yam p. 668)

“a uniform solution of the equations continues to exist even when patterns are
formed. However, this uniform solution is unstable.” (Bar-Yam p. 668)

A nice feature of the diffeq form, as compared to CA, 1s that the diffeq form has no
hard-coded length scale. It arises from the diffusion constants.



