
CS 446/646, Principles of Operating Systems, Spring 2006 CSE Department, UNR

Instructor: Dr. René Doursat

1 of 4

Programming Assignment 4 – CPU Scheduling Policies

Assigned: Tuesday, 4/11/2006, 11am

Due: Tuesday, 4/25/2006 before 4pm

In this assignment, you will write a program that simulates the CPU scheduling algorithms

described in section 9.2 of the required textbook by William Stallings (2004) Operating Systems:

Internals and Design Principles (5th Edition): First-Come-First-Serve (FCFS), Shortest Process

Next (SPN) and Shortest Remaining Time (SRT). Graduate students only (extra credit for the

others): Implement Round-Robin (RR), too, using only one queue for interrupted and new

processes (as in Figure 9.5, 2
nd
 and 3

rd
 tiers). This project contains three separate executables: a

CPU scheduling simulator schedsim, a process arrival generator schedgen, and a time

statistics program schedstats that produces consolidated data files used for performance plots.

1. Specifications of the CPU scheduling simulator schedsim

� schedsim must accept two command-line arguments: (a) an input filename where a sequence

of process arrival & burst times is stored, and (b) the chosen algorithm. The three (grads: four)

possible values for (b) are the strings fcfs, spn and srt (grads: and rr). Graduates:

Your program must also accept a third argument: (c) the round-robin time quantum q (positive

integer), if and only if the second argument is rr. Command line examples:

>./schedsim schedtimes.dat fcfs

>./schedsim schedtimes.dat rr 4

If schedsim is run with the wrong arguments or no arguments, it should print out a few lines

summarizing the usage instructions and exit.

� The format of the input file schedtimes.dat must be a simple ASCII list of pairs of

integers separated by line breaks, for example:

5 9

7 3

8 3

9 11

The first integer value represents the arrival time of a process and the second integer value

represents the burst time (in milliseconds, with one space between the two values). The process

number is implicitly given by the line number, starting at 1. Arrival times must be sorted in

increasing order. The input file should contain no other symbols or text. It can be written by

hand or generated by the schedgen program (see section 2. below).

� schedsim will first read all the process values from the input file and store them in a local

array. Then, it will play back these events and output the resulting schedule chart in character

mode format, along with the end times, turnaround times and waiting times for each completed

process. For example, the time values corresponding to the SRT section of Figure 9.5 of the

textbook must be displayed as follows:

2 of 4

1: runs 0-3 -> end=3, (arr=0), turn=3, (burst=3), wait=0

2: runs 3-4

3: runs 4-8 -> end=8, (arr=4), turn=4, (burst=4), wait=0

5: runs 8-10 -> end=10, (arr=8), turn=2, (burst=2), wait=0

2: runs 10-15 -> end=15, (arr=2), turn=13, (burst=6), wait=7

4: runs 15-20 -> end=20, (arr=6), turn=14, (burst=5), wait=9

 This representation means that process 2 (called B in the figure) ran from time 3 to time 4, then

ran again from time 10 to time 15 and completed at time 15, therefore its turnaround time is

15 (end) − 2 (arrival) = 13 and its waiting time is 13 (turnaround) − 6 (burst) = 7. The timing

values must be displayed exactly as illustrated above, all on the same line as the last process

burst, using the characters and symbols as shown. Do not align values using tab characters.

� After handling all the process events, schedsim should finally print the global average

turnaround time, global average normalized turnaround time (average of turnaround times

divided by burst times, i.e., average of the divisions, not division of the averages) and global

average waiting time. Use this printout format with two decimals:

Average turnaround time = 7.20

Average normalized turnaround time = 1.59

Average waiting time = 3.20

2. Specifications of the process arrival generator schedgen

� schedgen must accept four command-line arguments in the following order: (a) the total

number of processes N (positive integer), (b) the probability of arrival of a process pa (real

number between 0 and 1), (c) the probability of burst length of a process pb (real number

between 0 and 1), and (d) the name of the file that will be generated. Example:

>./schedgen 1000 0.5 0.2 schedtimes.dat

If schedgen is run with the wrong arguments or no arguments, it should print out a few lines

summarizing the usage instructions and exit.

� schedgen will generate a list of N processes formatted as specified in Section 1 above. The

time values are to be chosen randomly as follows: at each time step ta = 0, 1, 2, ... if a real

random number uniformly drawn in [0, 1) is less than pa, it means that a new process arrived at

ta. In this case, the burst time of this process tb is going to be determined by launching a second

time step counter tb = +1, +2, +3, ... and stopping whenever a second real random number

uniformly drawn in [0, 1) happens to be less than pb. At that point, and only then, a new line

containing the pair ta tb is added to the generated file. Repeat until the file contains N lines.

3. Specifications of the CPU scheduling statistics program schedstats

� schedstats must accept only one command-line argument: (a) the input filename

containing the process times. Example:

>./schedstats schedtimes.dat

3 of 4

If schedstats is run with the wrong arguments or no arguments, it should print out a few

lines summarizing the usage instructions and exit.

� schedstats will loop over three (grads: five) CPU scheduling methods: fcfs, spn,

srt (grads: and rr with q = 1 and q = 4) and for each method, it will calculate a histogram

of average time values per burst length. This means that a separate average turnaround time,

average normalized turnaround time and average waiting time will be calculated for each burst

length tb = +1, +2, +3, ... by pooling together all processes having this burst time.

� while running, schedstats will only print out one user message per algorithm to indicating

its current execution status:

processing fcfs...

processing spn...

...

� most importantly, schedstats must generate three results files containing all the calculated

average times. These results files must be named: schedturns.dat (average turnaround

times), schednturns.dat (average normalized turnaround times) and schedwaits.dat

(average waiting times), and must be formatted in the following way: Each file should contain

exactly four (grads: six) lines of B space-separated numbers, where B is the number of different

burst times. The first line must be the ordered sequence of different burst times extracted from

schedtimes.dat (likely to be 1 2 3 4 ..., with possible gaps), the other three (grads:

five) lines must be the sequences of average time values for each burst time. These sequences

must be in the following order: fcfs, spn, srt (grads: and rr with q = 1 and q = 4).

� Therefore, the implementation of both schedsim and schedstats must rely on a

common utility simulation engine (entry-point function) with the difference that schedsim is

going to run the simulation once and in verbose mode (displaying all the time steps and the

global average values; see Section 1), whereas schedstats is going to run the simulation

repeatedly and silently, and calculate per-burst averages, not global averages. In accordance

with this design, please keep the simulation engine in a source file distinct from the

schedsim and schedstats capstone codes.

Specifications of the plots

� Once schedturns.dat, schednturns.dat and schedwaits.dat have been

generated you must use the graphing tool of your choice to create three plots, each plot

containing the three (grads: five) scheduling algorithms, similarly to Figures 9.14 and 9.15 of

the textbook. Each plot file should be a JPEG (or PNG) image respectively called

schedturns.jpg, schednturns.jpg and schedwaits.jpg (or .png).

� A benchmark input file will be sent to you later. Along with your source and documentation

files, you will have to submit the stats files and plot image files resulting from the execution of

schedstats against this input file.

4 of 4

Project Requirements, Submission & Required Documentation

� Follow all the requirement and submission guidelines exactly as prescribed in Stallings’ book on

pages 154 to 156, replacing the name of the executable myshell with schedsim,

schedgen and schedstats, and naturally any mention of “shell” and shell features with

these programs’ features. I remind you that Stallings’ guidelines include, among other things:

appropriately structuring and properly commenting the code (3.), not including object code or

executables in your submission (5.), naming the makefile exactly makefile (6.), naming the

readme file exactly readme, and writing a reasonably detailed UNIX-like readme

documentation (2.). Your documentation should describe the problem’s background, the

programs’ usage and parameters, and a sample of a typical outcome.

� Your programs must compile without warnings and run properly under Gentoo Linux, the

system used in the ECC lab (check their Web site for hours). You may develop and test your

programs on your own UNIX machine (you can also produce the stats file and plots from your

machine), but it is your responsibility to make sure that they also work properly on the Gentoo

installation of ECC, under the default ECC Lab shell. There will be a penalty if they don’t.

� Place all necessary files and documents in a compressed tarball using tar and gzip (.tar.gz or

.tgz) or, alternatively, a zip file (.zip) (please do not use the bzip2 format). Email this file

to the instructor doursat@unr.edu before the deadline above. Do not turn in printouts in any

form. Late assignments will be marked down according to the late policy published on the

course Web page.

� Do not show, exchange or copy code with anyone, and do not look for a solution on the Web!

Plagiarism will be detected and severely penalized. This must remain an individual effort.

� Please keep clean code organization, layout and coding conventions, as these will also be an

important part of the grade.

Thank you and good luck!

