
CS 446/646, Principles of Operating Systems, Spring 2006 CSE Department, UNR
Instructor: Dr. René Doursat

Programming Assignment 2 – The Dining Philosophers Problem

Assigned: Tuesday, 3/14/2006, 4pm
Due: Tuesday, 3/28/2006, 4pm

Part 1. Read chapter 14—sections 14.1 to 14.5 only—of the required textbook by Bruce Molay
(2002) Understanding Unix/Linux Programming: A Guide to Theory and Practice (1st Edition).
Try out (compile and run) all the example codes featured in sections 14.1 to 14.5 of chapter 14 and
make sure you understand how they work. You are not required to read sections 14.6 and 14.7 for
this assignment. Source files can be downloaded from the book’s companion Web site (link in the
CS 446/646 Web page). This part will not be graded, it is only intended to prepare you for Part 2.
Do not turn in a report about Part 1.

Part 2. Write a program that implements the so-called “Dining Philosophers Problem” (DPP)
described in section 6.6 of the required textbook by William Stallings (2004) Operating Systems:
Internals and Design Principles (5th Edition) on pages 275 to 279, as follows:

Specifications

 Your program must accept three command-line arguments in this order: (a) the number
of philosophers, (b) the number of seconds (possibly decimal) that each philosopher
takes to think or eat, and (c) the total number of think-eat cycles that each philosopher
will go through (so that the program eventually ends).

 Each philosopher will be represented by one separate thread. A simple output statement

such as printf will be sufficient to specify the action of each philosopher when she/he
is about to think or eat (this message must contain the philosopher’s identification). The
thinking and eating times will be simulated using the sleep function with the number
of seconds given in argument.

Implementation

 You must implement the monitor–like version of the DPP: a detailed template of this

solution is presented in Fig. 6.14 of Stallings (do not use pure semaphores in this
assignment). However, as with Molay’s source examples, you must write your program
in C/C++ and may only use the POSIX Thread Library pthread, without explicit
support for monitor objects. Therefore, refer to section 5.4 of Stallings, which explains
how synchronization in a monitor actually relies on condition variables, and section 14.5
of Molay, which precisely illustrates the use of condition variables with the pthread
library in a manner equivalent to a monitor.

Project Requirements, Submission & Required Documentation

 Follow all the requirement and submission guidelines exactly as prescribed in Stallings’

book on pages 154 to 156, except that you will replace the name of the executable
myshell with dpp and, naturally, any mention of “shell” and shell features with the

1 of 2

present DPP program. I remind you that these guidelines include, among other things:
appropriately structuring and properly commenting the code (3.), not including object
code or executables in your submission (5.), naming the makefile exactly makefile
(6.), naming the readme file exactly readme, and writing a reasonably detailed readme
documentation (2.).

 Your code must compile without warnings and run properly under Gentoo Linux, the

system used in the ECC lab (check their Web site for hours). You may develop and test
your code on your own UNIX machine, but it is your responsibility to make sure that it
is also going to work properly on the Gentoo installation of ECC, under the default ECC
Lab shell. There will be a penalty if it doesn’t.

 Place all the necessary files and documents in a compressed tarball using tar and gzip

(.tar.gz or .tgz) or, alternatively, a zip file (.zip) (please do not use the bzip2
format). Email this file to the instructor doursat@unr.edu within two weeks, before
Tuesday, 3/28/2006, 4pm. Do not turn in printouts in any form. Late assignments will
be marked down according to the late policy published on the course Web page.

 Do not show, exchange or copy code with anyone, and do not look for a solution on the

Web! Plagiarism will be detected and severely penalized. This must remain an
individual effort. The only exception is that your code may bear some family
resemblance with Molay’s source code (such as twordcount4.c), as you might
decide to use his code as a starting point—but naturally, the end result will perform an
entirely different function and, accordingly, should look very different.

 Please keep clean code organization, layout and coding conventions, as these will also be

an important part of the grade.

Thank you and good luck!

2 of 2

mailto:doursat@unr.edu

	Assigned: Tuesday, 3/14/2006, 4pm
	Due: Tuesday, 3/28/2006, 4pm
	Specifications
	Implementation
	Project Requirements, Submission & Required Documentation

