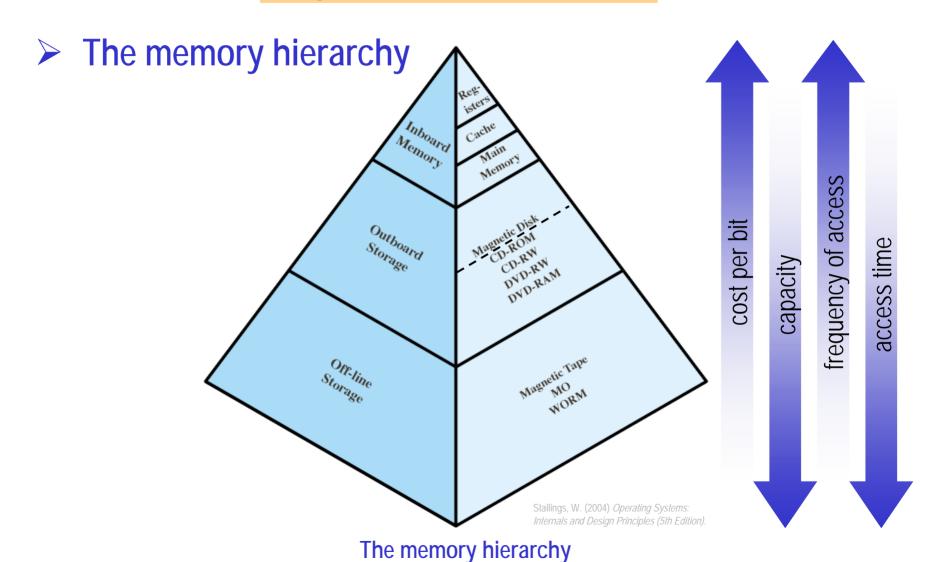
CS 446/646

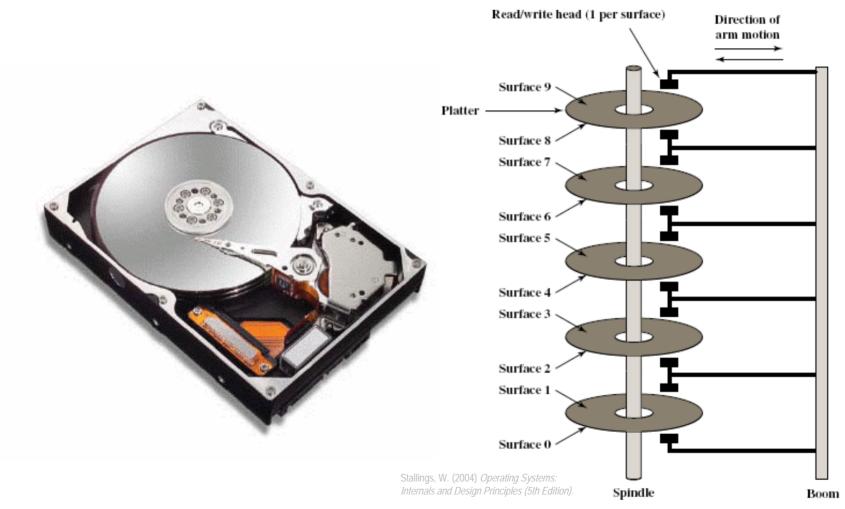

5. Input/Output

- a. Overview of the O/S Role in I/O
- b. Principles of I/O Hardware
- c. I/O Software Layers

d. Disk Management

- ✓ Physical disk characteristics
- ✓ Disk formatting
- ✓ Disk scheduling

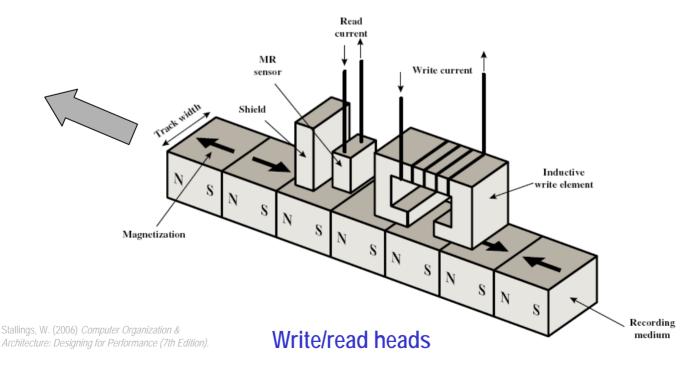
Physical disk characteristics



Physical disk characteristics

Rigid ("hard") magnetic disks

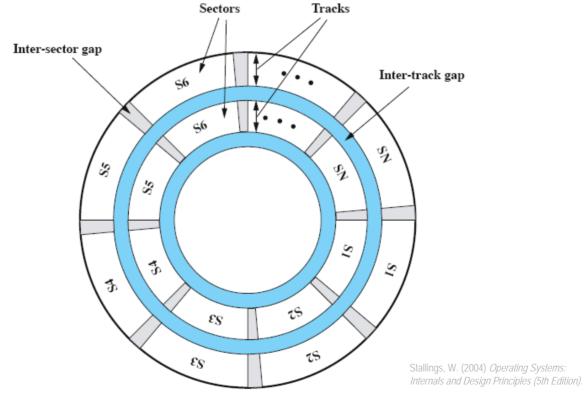
- ✓ remain today the most important secondary memory (although the gap between CPU and disk performance has increased)
- ✓ diameter shrunk from 50 cm down to 12 or 3 cm (notebooks)
- ✓ "Winchester" disks are sealed
- ✓ components of a disk drive:
 - one or several aluminum platters stacked vertically
 - platters have magnetizable coating on both sides
 - one pair of read/write movable heads per platter surface (heads hover on air cushion, don't make contact)
 - all heads mechanically fixed so they move together and are all at same distance from center


Physical disk characteristics

Components of a disk drive

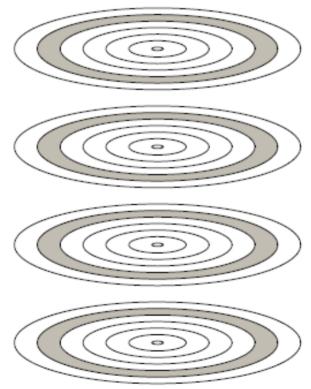
Physical disk characteristics

- > In modern systems, read and write heads are separate
 - ✓ the write head is an induction coil: produces a magnetic field
 - ✓ the read head is a magnetoresistive (MR) sensor: resistance depends on magnetic field, thus generates variable voltage



Disk formatting

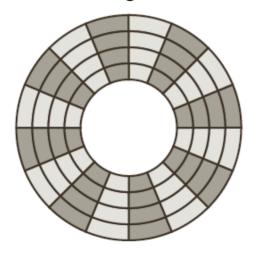
- Data organization and formatting
 - ✓ after manufacturing, there is no information on the disk: just a blank slate (continuous surface of magnetizable metal oxide)
 - ✓ before a disk can be used, each platter must receive a lowlevel format ("physical format") done by code in I/O controller:
 - series of concentric tracks (not grooves)
 - each tracks contains sectors, separated by short gaps
 - ✓ then the disk may be partitioned
 - ✓ finally, each partition receives a high-level format ("logical"):
 - boot sector, free storage map, file allocation table, etc.
 - → we'll see more of this in the File System chapter


5.d Disk ManagementDisk formatting

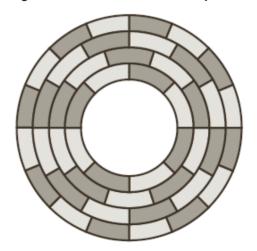
- ➤ A disk is addressed as a 1-D array of logical blocks
 - ✓ translation between logical block # and track # + sector #

Disk formatting

Vertically aligned tracks on multiple platters are called "cylinders"


Stallings, W. (2004) *Operating Systems: Internals and Design Principles (5th Edition).*

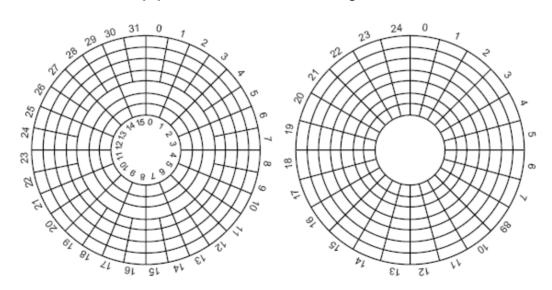
Tracks and cylinders


Disk formatting

Disk layout methods

- ✓ constant angular velocity: pie-shaped sectors, same number per track → simple but wasted space on the long outer tracks
- ✓ multiple zone recording: fixed-length sectors, variable number per track → greater data density but more complicated access

(b) Multiple zoned recording

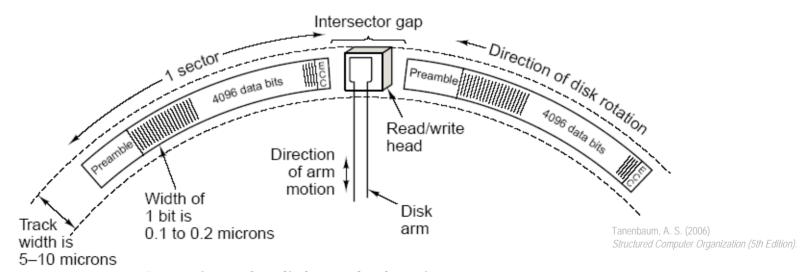

Stallings, W. (2004) *Operating Systems: Internals and Design Principles (5th Edition*

Comparison of disk layout methods

5.d Disk ManagementDisk formatting

Virtual disk geometry

- ✓ most disks are physically MZR but may still present a simpler, virtual CAV geometry to the O/S
- ✓ the O/S driver uses cylinder, track, sector coordinates (x, y, z) which are remapped into zones by the I/O controller

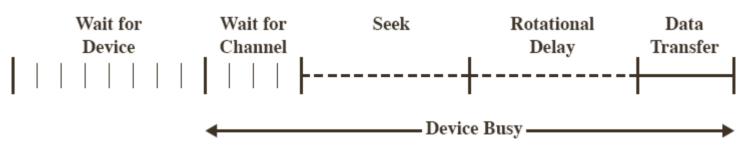

Tanenbaum, A. S. (2001)

Modern Operating Systems (2nd Edition)

Physical geometry vs. virtual geometry

5.d Disk ManagementDisk formatting

- Tracks are divided into fixed-length sectors
 - ✓ each sector typically contains
 - 512 bytes of data
 - preceded by a preamble (for head synchronization)
 - followed by an error-correcting code (ECC)



A portion of a disk track showing two sectors

Disk scheduling

Disk performance parameters

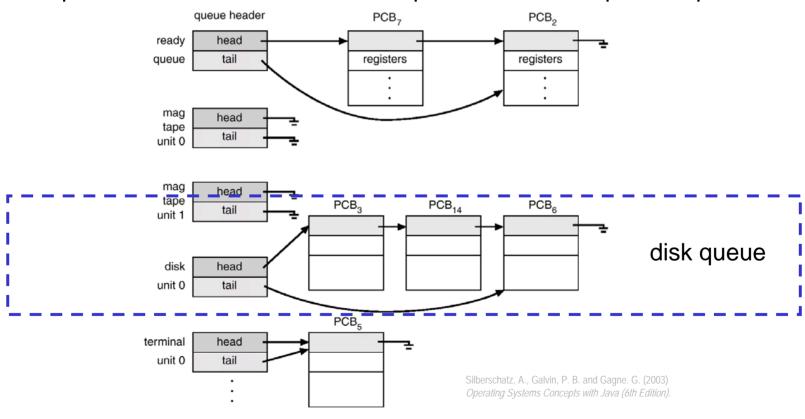
- ✓ seek time: time it takes to position the head at the track
- ✓ rotational delay: time it takes for the beginning of the sector to reach the head
- ✓ access time = seek time + rotational delay
- ✓ transfer time: time required for sector data transfer

Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition

Timing of a disk I/O transfer

Disk scheduling

Disk performance parameters


- ✓ average seek time typically < 10 ms (thanks to small diameter)
 </p>
- ✓ rotational speed $r \approx 7,500$ rpm = 1r / 8 ms \rightarrow 4 ms rot. delay
- ✓ transfer time T = b/rN with b/N = transferred bytes / track

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk
Number of cylinders	40	10601
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	360 KB	18.3 GB
Seek time (adjacent cylinders)	6 msec	0.8 msec
Seek time (average case)	77 msec	6.9 msec
Rotation time	200 msec	8.33 msec
Motor stop/start time	250 msec	20 sec
Time to transfer 1 sector	22 msec	17 μsec

Two opposites on the historical scale of disk parameters

Disk scheduling

- Additional waiting time for device availability
 - ✓ processes blocked for I/O are put into device-specific queues

Various I/O device queues

Disk scheduling

- Why disk scheduling matters: a timing comparison
 - ✓ total average service time

$$Tservice = Tseek + Trotational + Ttransfer$$

= $Tseek + 1/2r + b/rN$

- ✓ assume Tseek = 4 ms, r = 7,500 rpm, 500 sectors per track × 512 bytes per sector $\rightarrow Ttransfer = 0.016$ ms / sector
- first case: reading 2,500 randomly scattered sectors $Tservice = 2,500 \times (4 \text{ ms} + 4 \text{ ms} + 0.016 \text{ ms}) = 20 \text{ seconds}$
- first case: reading 2,500 contiguous sectors (in 5 tracks) $Tservice = 4 \text{ ms} + 5 \times 4 \text{ ms} + 2,500 \times 0.016 \text{ ms} = 64 \text{ ms}$
- → the order of sector access requests can make a big difference!

5.d Disk Management Disk scheduling

- Overview of disk scheduling policies
 - ✓ kernel-level scheduling: based on requestor process
 - control of scheduling outside of disk management software
 - not intended to optimize disk utilization
 - main objective is process priorities defined by the O/S
 - or following a blind, generic policy such as FIFO (no starvation) or LIFO (locality)
 - ✓ driver-level scheduling: based on requested item
 - goal is to optimize disk utilization
 - the disk-specific software has expertise on how requests should be ordered

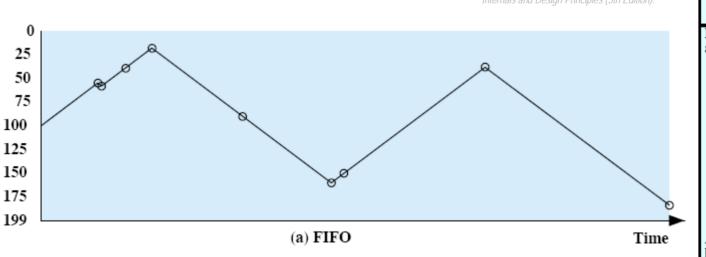
Disk scheduling

- Overview of disk scheduling policies
 - ✓ kernel-level (process) vs. driver-level (request) scheduling

Name	Description	Remarks	
Selection according to requestor			
RSS	Random scheduling	For analysis and simulation	
FIFO	First in first out	Fairest of them all	
PRI	Priority by process	Control outside of disk queue management	
LIFO	Last in first out	Maximize locality and resource utilization	
Selection according to requested item			
SSTF	Shortest service time first	High utilization, small queues	
SCAN	Back and forth over disk	Better service distribution	
C-SCAN	One way with fast return	Lower service variability	
N-step-SCAN	SCAN of N records at a time	Service guarantee	
FSCAN	N-step-SCAN with N = queue size at beginning of SCAN cycle	Load sensitive	

5.d Disk Management Disk scheduling

- Comparing performance of scheduling policies
 - ✓ assume disk with 200 tracks
 - ✓ assume sequence of requested tracks in order received by disk scheduler: 55, 58, 39, 18, 90, 160, 150, 38, 184
 - ✓ assume disk head initially located at track #100
 - ✓ we will compare FIFO, SSTF, SCAN, C-SCAN


Disk scheduling

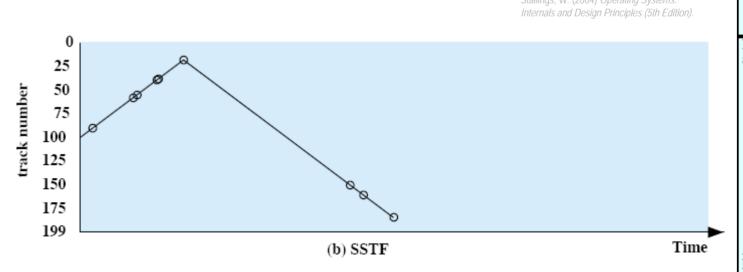
- First-In-First-Out (FIFO)
 - ✓ requests are processed in arrival order
 - ✓ fair and no risk of starvation
 - ✓ ok if few processes and requests cluster file sectors (locality)

Stallings, W. (2004) Operating Systems.

✓ generally bad, though, as interleaving causes random seek

jumps and waste of time

(starting at track 100)		
Next track accessed	Number of tracks traversed	
55	45	
58	3	
39	19	
18	21	
90	72	
160	70	
150	10	
38	112	
184	146	
Average seek length	55.3	

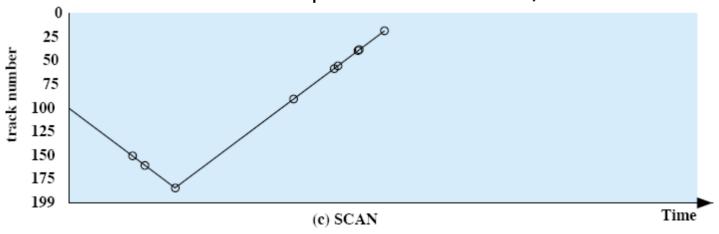

(a) FIFO

rack number

Disk scheduling

Shortest Service (Seek) Time First (SSTF)

- ✓ select the request that requires the least arm movement, i.e.,
 the shortest seek time
- ✓ much better than random or FIFO, however greater risk of starvation: requests in remote disk area may remain unfulfilled as long as there are shorter ones
 (b) SSTE

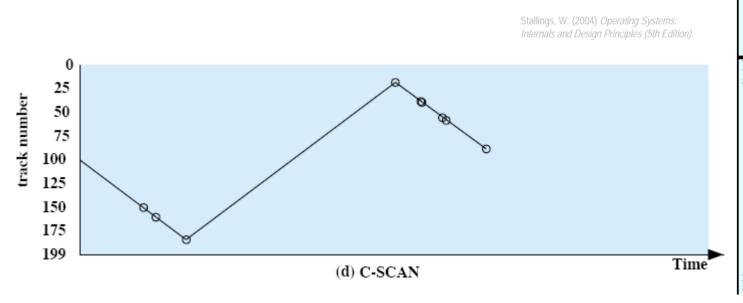

(b) SSTF (starting at track 100)		
(statung at track 100)		
Next track accessed	Number of tracks traversed	
90 58 55	10 32 3	
39 38	16 1	
18 150 160	20 132 10	
184	24	
Average seek length	27.5	

Disk scheduling

Scan or "elevator" algorithm (SCAN)

- ✓ to prevent starvation, the arm moves in one direction only and satisfies requests "en route"
- ✓ arm direction is reversed when reaching the last track (innermost or outermost)
 Stallings, W

✓ . . . or as soon as reaching last request (LOOK: the variant implemented in Linux)



(c) SCAN		
(starting at track 100, in the direction of increasing track number)		
Next track accessed	Number of tracks traversed	
150 160	50 10	
184	24	
90 58	94 32	
55 39	3 16	
38 18	1 20	
Average seek length	27.8	

Disk scheduling

Circular scan (C-SCAN)

- ✓ same as SCAN except the arm direction of movement is never reversed
- ✓ this reduces the maximum delay experienced by new requests that arrived at the opposite end of the disk

(d) C-SCAN		
(starting at track 100, in the direction of increasing track number)		
Next track accessed	Number of tracks traversed	
150 160 184	50 10 24	
18 38	166 20	
39 55 58	1 16 3	
90	32	
Average seek length	35.8	

CS 446/646

5. Input/Output

- a. Overview of the O/S Role in I/O
- b. Principles of I/O Hardware
- c. I/O Software Layers

d. Disk Management

- ✓ Physical disk characteristics
- ✓ Disk formatting
- ✓ Disk scheduling

CS 446/646

5. Input/Output

- a. Overview of the O/S Role in I/O
- b. Principles of I/O Hardware
- c. I/O Software Layers
- d. Disk Management

CS 446/646

- 0. Course Presentation
- 1. Introduction to Operating Systems
- 2. Processes
- 3. Memory Management
- 4. CPU Scheduling
- 5. Input/Output
- 6. File System
- 7. Case Studies