5.b Principles of I/O Hardware
CPU-1/O communication

» Three communication protocols between CPU and I/O
1. Programmed I/O (or “polling” or “busy waiting”)

= the CPU must repeatedly poll the device to check if the I/O
request completed

2. Interrupt-driven I/O

= the CPU can switch to other tasks and is (frequently)
Interrupted by the I/O device

3. Direct Memory Access (DMA)

= the CPU is involved only at the start and the end of the
whole transfer; it delegates control to the I/O controller that
accesses memory directly without bothering the CPU

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 28

5.b Principles of I/O Hardware
CPU-1/O communication

1. Programmed I/O e ol
v the CPU issues an /O command @ i ©
(on behalf of a process) to an 1/0 g, 76
module L T
®
v" the CPU (the process) then busy =5
waits for completion before _n
proceeding
v also called “busy waiting” or WRITE 7
“polling”
@
1
WRITE
4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 29

5.b Principles of I/O Hardware
CPU-1/O communication

[ssue Read
e command to
/'O module

CPU — /O

Read status
of O
maodule

Error

Read word
from I/0
Module

Write word

. CPU — memory
into memory :

Mext instruction

(a) Programmed /O

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.b Principles of I/O Hardware
CPU-1/O communication

1. Programmed /O
v" Dbasic handshake protocol between CPU and I/0O module

4/13/2006

d.

host repeatedly polls occupied bit in status register of 1/0
module until cleared (this is the busy waiting part)

host sets write bit in command register of /O module and
writes byte into data-out register of 1/0 module

c. host sets command-ready bit of /0 module

. 1/0 module notices command-ready bit and sets occupied bit

/0 module reads command and data-out registers and
orders I/O device to perform I/O

when suceeded, I/0 module clears command-ready bit, error
bit and occupied bit

CS 446/646 - Principles of Operating Systems - 5. Input/Output 31

» Example: writing a string to the printer

User .
space

Kernel d
space

5.b Principles of I/O Hardware

CPU-I/O communication

4/13/2006

String to
be printed
J Printed
page
ABCD J
EFGH
(a)

Mext =

ABCD
EFGH

Printed
page

l

A

Steps in printing a string

CS 446/646 - Principles of Operating Systems - 5. Input/Output

Mext -*

ABCD
EFGH

AB

32

5.b Principles of I/O Hardware
CPU-1/O communication

» Example of “driver” logic: writing a string to the printer

1. ...using programmed I/O:
copy_from_user(buffer, p, count); [* p is the kernel bufer #/
for (i=0; i< count; i++) { /* loop on every character */
while (*printer_status_reg = READY) ;/* loop until ready */
printer _data_register = p[i]; [output one character */
h

return_to_user();

Programmed I/O code

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 33

5.b Principles of I/O Hardware
CPU-1/O communication

1. Programmed I/O problems

v" the I/O device (module) is passive and needy: it does not alert
the CPU that it is ready and does not transfer data to/from
memory by itself

v" the CPU needs to continually check the 1/O status and data
registers

= to minimize the CPU waiting time

= put also to avoid overflow in the small buffer of the
controller: needs to be regularly cleared

v"naturally this is a waste of CPU time if the I/O transfer is slower
than the CPU. . . which it always Is!

v" no longer an option today

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 34

2.

5.b Principles of I/O Hardware

CPU-I/O communication

Interrupt-driven 1/O

v

v

4/13/2006

the CPU issues an I/O command (on
behalf of a process) to an /O module

... but does not wait for completion;
Instead, It continues executing
subsequent instructions

then, later, it is interrupted by the 1/O
module when work is complete

note: the subsequent instructions
may be in the same process or not,
depending on whether 1/0 was
requested asynchronously or not:
process wait = CPU walit!

User /O
Program Program
—==, s , et
B R e 70
WRITE *- ___________ Command
PR " Interrupt
* '."." y Tl Handlgr
11:: '1 i e
—— ¥]
WRITE ; B3 @
o < END
x
I
WRITE
35

CS 446/646 - Principles of Operating Systems - 5. Input/Output

4/13/2006

5.b Principles of I/O Hardware
CPU-1/O communication

[ssue Read
= command o
'O module

CPU — /O

Read status
of O
madule

O — CPU

Error
condition
Read word
from I/O /0 — CPU

Module

Write word

. CPU — memory
into memory :

MNext instruction
(a) Programmed /O

Issue Bead

=+ command to

/O module

Read status
of IO
module

Ready

Read word
from IO
Module

Write word
into memory

Mext instruction

PU — [/O
Do something
= clse

=== [ntermupt

1/ — CPU

Error
condition

PLU — memory

by Interrupt-driven IO

CS 446/646 - Principles of Operating Systems - 5. Input/Output

36

2.

Interrupt-driven 1/O
v CPU senses interrupt

4/13/2006

5.b Principles of I/O Hardware
CPU-1/O communication

Fetch Stage Execute Stage Interrupt Stage

START L AR

In a third stage of the
fetch/execute cycle

control (PC) transfers to

an Interrupt handler In User Program InlermpiHan(ller
kernel space, 1
which branches to O/S . .
routines specific to the . .
type of interrupt; et |

. occurs here i+1 <
the CPU is eventually .
returned to this user .
program . . . or another M

CS 446/646 - Principles of Operating Systems - 5. Input/Output 37

5.b Principles of I/O Hardware
CPU-1/O communication

» Example of “driver” and “interrupt handler” logic:
writing a string to the printer

2. ...using Interrupts:
copy_from_user(buffer, p, count); if (count ==0) {

= enable_interrupts(), unblock_user();
8’ only | while (*printer_status_reg != READY) ;| } else { el
. 1stchar | *printer_data_register = p[0]; *printer_data_register = p[i]; 'g
G>J scheduler(); count = count - 1; ©
= =10+ 1; =
} =)
acknowledge_interrupt(); =
return _from_interrupt(). 5
=

(a) (b)

Interrupt-driven 1/0O code: (a) system call and (b) interrupt service procedure

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 38

5.b Principles of I/O Hardware
CPU-1/O communication

2. Interrupt-driven I/O

v relies on an efficient hardware mechanism that saves a small
amount of CPU state, then calls a privileged kernel routine

v"note that this hardware mechanism is put to good use by the
OIS for other events:

= |n virtual memory paging, a page fault is an exception that
raises an interrupt

= gystem calls execute a special instruction (TRAP), which is
a software interrupt

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 39

5.b Principles of I/O Hardware
CPU-1/O communication

2. Interrupt-driven I/O problems
v" the I/O device (module) is more active but still very needy

v" wasteful to use an expensive general-purpose CPU to feed a
controller 1 byte at a time

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 40

5.b Principles of I/O Hardware
CPU-1/O communication

3. Direct Memory Access (DMA)
v'avoids programmed/interrupted 1/O for large data movement

v’ requires a special-purpose processor called DMA
controllerbypasses CPU to transfer data directly between I/O
device and memory

v"the handshaking is performed between the DMA controller and
the 1/0 module: in essence, the DMA controller is going to do
the programmed I/O instead of the CPU

v"only when the entire transfer is finished does the DMA
controller interrupt the CPU

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 41

5.b Principles of I/O Hardware
CPU-1/O communication

Issue Read Issue Read PU — /O Issue Read PU — DMA
=» command to [|CPU — IO =+ command o Do something block command Do something
VO module [~ else to /O module [T alse

YO module

Read status Read status === [ntermupt Eead status R —
of O /O — CPU of 10 P of DMA .
module module /0 — CPU module DMA — CPU

Mext instruction

Error Error
condition condition {c) Direct memory access
Ready
Read wornd Eead word
from /O /O — CPU from V'O /0 — CPU

Module Module

Write word
into memory

Write word

. CPU — memory
into memory :

PU — memory

Mext instruction Mext instruction
(a) Programmed /O (b Imterrupt-driven 'O

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.b Principles of I/O Hardware
CPU-1/O communication

3. Direct Memory Access (DMA)

1. device driver is told to
transfer disk data to
buffer at address X CPU
5. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C |
increasing memory bytes from disk to buffer cache
address and decreasing at address X
CuntiC=0
6. when C = 0, DMA DMA/bus/interrupt } — X
interrupts CPU to signal controller Gl aman.abus memory | buffer
transfer completion
§ PCI bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA
controller

IDE disk controller

@) @)
@) @

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

Steps in a DMA transfer

5.b Principles of I/O Hardware
CPU-1/O communication

» Example of “driver” logic: writing a string to the printer
3. ...using DMA:

copy_from_user(buffer, p, count); | acknowledge_interrupt();

set_up_DMA _controller(); unblock_user();

scheduler(); return_from _interrupt()
(a) (b)

DMA-supported I/O code: (a) system call and (b) interrupt service procedure

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 44

5.b Principles of I/O Hardware
CPU-1/O communication

» Summary

4/13/2006

No Interrupts

Use of Interrupts

1/O-to-memory transfer
through processor

Programmed 'O

Interrupt-drven L/O

Direct I/O-to-memory
transfer

Direct memory access (DMA)

CS 446/646 - Principles of Operating Systems - 5. Input/Output

45

Principles of Operating Systems
CS 446/646

5. Input/Output

b. Principles of I/O Hardware

v" The diversity of I/O devices
v 1/0 bus architecture

v /0 devices & modules

v" CPU-I/O communication

c. 1/O Software Layers

d. Disk Management

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

46

