
4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 28

5.b Principles of I/O Hardware
CPU-I/O communication

Three communication protocols between CPU and I/O
1. Programmed I/O (or “polling” or “busy waiting”)

the CPU must repeatedly poll the device to check if the I/O
request completed

2. Interrupt-driven I/O
the CPU can switch to other tasks and is (frequently)
interrupted by the I/O device

3. Direct Memory Access (DMA)
the CPU is involved only at the start and the end of the
whole transfer; it delegates control to the I/O controller that
accesses memory directly without bothering the CPU

1. Programmed I/O
the CPU issues an I/O command
(on behalf of a process) to an I/O
module
the CPU (the process) then busy
waits for completion before
proceeding
also called “busy waiting” or
“polling”

5.b Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 29

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 30

5.b Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 31

5.b Principles of I/O Hardware
CPU-I/O communication

1. Programmed I/O
basic handshake protocol between CPU and I/O module
a. host repeatedly polls occupied bit in status register of I/O

module until cleared (this is the busy waiting part)
b. host sets write bit in command register of I/O module and

writes byte into data-out register of I/O module
c. host sets command-ready bit of I/O module
d. I/O module notices command-ready bit and sets occupied bit
e. I/O module reads command and data-out registers and

orders I/O device to perform I/O
f. when suceeded, I/O module clears command-ready bit, error

bit and occupied bit

5.b Principles of I/O Hardware
CPU-I/O communication

Example: writing a string to the printer

Steps in printing a string

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 32

5.b Principles of I/O Hardware
CPU-I/O communication

Example of “driver” logic: writing a string to the printer
1. . . . using programmed I/O:

Programmed I/O code

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 33

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 34

5.b Principles of I/O Hardware
CPU-I/O communication

1. Programmed I/O problems
the I/O device (module) is passive and needy: it does not alert
the CPU that it is ready and does not transfer data to/from
memory by itself
the CPU needs to continually check the I/O status and data
registers

to minimize the CPU waiting time
but also to avoid overflow in the small buffer of the
controller: needs to be regularly cleared

naturally this is a waste of CPU time if the I/O transfer is slower
than the CPU. . . which it always is!
no longer an option today

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 35

5.b Principles of I/O Hardware
CPU-I/O communication

2. Interrupt-driven I/O
the CPU issues an I/O command (on
behalf of a process) to an I/O module
. . . but does not wait for completion;
instead, it continues executing
subsequent instructions
then, later, it is interrupted by the I/O
module when work is complete
note: the subsequent instructions
may be in the same process or not,
depending on whether I/O was
requested asynchronously or not:
process wait ≠ CPU wait! Stallings, W. (2004) Operating Systems:

Internals and Design Principles (5th Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 36

5.b Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 37

5.b Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2. Interrupt-driven I/O
CPU senses interrupts
in a third stage of the
fetch/execute cycle
control (PC) transfers to
an interrupt handler in
kernel space,
which branches to O/S
routines specific to the
type of interrupt;
the CPU is eventually
returned to this user
program . . . or another

5.b Principles of I/O Hardware
CPU-I/O communication

Example of “driver” and “interrupt handler” logic:
writing a string to the printer
2. . . . using interrupts:

only
1st char

Interrupt-driven I/O code: (a) system call and (b) interrupt service procedure

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

dr
iv

er
 lo

gi
c

in
te

rr
up

t h
an

dl
er

 lo
gi

c

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 38

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 39

5.b Principles of I/O Hardware
CPU-I/O communication

2. Interrupt-driven I/O
relies on an efficient hardware mechanism that saves a small
amount of CPU state, then calls a privileged kernel routine
note that this hardware mechanism is put to good use by the
O/S for other events:

in virtual memory paging, a page fault is an exception that
raises an interrupt
system calls execute a special instruction (TRAP), which is
a software interrupt

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 40

5.b Principles of I/O Hardware
CPU-I/O communication

2. Interrupt-driven I/O problems
the I/O device (module) is more active but still very needy
wasteful to use an expensive general-purpose CPU to feed a
controller 1 byte at a time

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 41

5.b Principles of I/O Hardware
CPU-I/O communication

3. Direct Memory Access (DMA)
avoids programmed/interrupted I/O for large data movement
requires a special-purpose processor called DMA
controllerbypasses CPU to transfer data directly between I/O
device and memory
the handshaking is performed between the DMA controller and
the I/O module: in essence, the DMA controller is going to do
the programmed I/O instead of the CPU
only when the entire transfer is finished does the DMA
controller interrupt the CPU

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 42

5.b Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).

3. Direct Memory Access (DMA)

5.b Principles of I/O Hardware
CPU-I/O communication

Steps in a DMA transfer

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 43

5.b Principles of I/O Hardware
CPU-I/O communication

Example of “driver” logic: writing a string to the printer
3. . . . using DMA:

DMA-supported I/O code: (a) system call and (b) interrupt service procedure

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 44

5.b Principles of I/O Hardware
CPU-I/O communication

Summary

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 45

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 46

Principles of Operating Systems
CS 446/646

5. Input/Output
a. Overview of the O/S Role in I/O

b. Principles of I/O Hardware
The diversity of I/O devices
I/O bus architecture
I/O devices & modules
CPU-I/O communication

c. I/O Software Layers

d. Disk Management

