

Principles of Operating Systems CS 446/646

5. Input/Output

René Doursat

Department of Computer Science & Engineering
University of Nevada, Reno
Spring 2006

CS 446/646

- 0. Course Presentation
- 1. Introduction to Operating Systems
- 2. Processes
- 3. Memory Management
- 4. CPU Scheduling
- 5. Input/Output
- 6. File System
- 7. Case Studies

CS 446/646

5. Input/Output

- a. Overview of the O/S Role in I/O
- b. Principles of I/O Hardware
- c. I/O Software Layers
- d. Disk Management

CS 446/646

5. Input/Output

- a. Overview of the O/S Role in I/O
- b. Principles of I/O Hardware
- c. I/O Software Layers
- d. Disk Management

5.a Overview of the O/S Role in I/O

The I/O subsystem is layered

Layers of the I/O system

5.a Overview of the O/S Role in I/O

The I/O subsystem is layered

A kernel I/O structure

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003) Operating Systems Concepts with Java (6th Edition).

5.a Overview of the O/S Role in I/O

Chart of operating system responsibilities in I/O

§D – The O/S is responsible for controlling access to all the I/O devices

- ✓ the O/S hides the peculiarities of specific hardware devices from the user
- ✓ the O/S issues the low-level commands to the devices, catches interrupts and handles errors
- ✓ the O/S relies on software modules called "device drivers"
- ✓ the O/S provides a device-independent API to the user programs, which includes buffering

CS 446/646

5. Input/Output

- a. Overview of the O/S Role in I/O
- b. Principles of I/O Hardware
- c. I/O Software Layers
- d. Disk Management

CS 446/646

5. Input/Output

a. Overview of the O/S Role in I/O

b. Principles of I/O Hardware

- ✓ The diversity of I/O devices
- √ I/O bus architecture
- √ I/O devices & modules
- ✓ CPU-I/O communication
- c. I/O Software Layers
- d. Disk Management

- Great variety of I/O devices
 - ✓ storage devices
 - disks
 - tapes
 - ✓ transmission devices
 - network cards
 - modems
 - ✓ human-interface devices
 - screen
 - keyboard
 - mouse

- ➤ I/O devices vary in many dimensions (but these categories have fuzzy boundaries)
 - ✓ main distinction: character-stream vs. block
 - block devices transfer blocks of bytes as units
 - block devices store information in fixed-size blocks
 - blocks can be accessed independently from each other
 - disks are typical block devices; tapes not so typical
 - character devices transfer bytes one by one
 - accepts or delivers a stream of characters without block structure
 - not addressable, not seekable

- I/O devices vary in many dimensions (cont'd)
 - ✓ sequential vs. random-access
 - sequential devices transfer in a fixed order they determine
 - random-access devices can be "seeked" at any storage location
 - ✓ synchronous vs. asynchronous
 - synchronous devices have predictable transfer times
 - asynchronous devices are irregular

- I/O devices vary in many dimensions (cont'd 2)
 - ✓ sharable vs. dedicated
 - sharable devices may be used concurrently by several processes or threads
 - dedicated devices cannot
 - ✓ speed of operation
 - devices speed range from a few bytes to a few GB per second
 - ✓ read-write, read only, or write only
 - some devices are both input/output, others only one-way

The diversity of I/O devices

> I/O devices vary in many dimensions

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controller disk

Characteristics of I/O devices

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003) Operating Systems Concepts with Java (6th Edition).

The diversity of I/O devices

I/O devices vary hugely in data transfer speed

Typical I/O device data rates

Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition)

The diversity of I/O devices

Device	Data rate
Keyboard	10 bytes/sec
Mouse	100 bytes/sec
56K modem	7 KB/sec
Telephone channel	8 KB/sec
Dual ISDN lines	16 KB/sec
Laser printer	100 KB/sec
Scanner	400 KB/sec
Classic Ethernet	1.25 MB/sec
USB (Universal Serial Bus)	1.5 MB/sec
Digital camcorder	4 MB/sec
IDE disk	5 MB/sec
40x CD-ROM	6 MB/sec
Fast Ethernet	12.5 MB/sec
ISA bus	16.7 MB/sec
EIDE (ATA-2) disk	16.7 MB/sec
FireWire (IEEE 1394)	50 MB/sec
XGA Monitor	60 MB/sec
SONET OC-12 network	78 MB/sec
SCSI Ultra 2 disk	80 MB/sec
Gigabit Ethernet	125 MB/sec
Ultrium tape	320 MB/sec
PCI bus	528 MB/sec
Sun Gigaplane XB backplane	20 GB/sec

Tanenbaum, A. S. (2001)

Modern Operating Systems (2nd Edition)

Some typical device, network, and bus data rates

I/O bus architecture

> CPU, memory and I/O devices communicate via buses

- ✓ a system bus is the "public transportation" of memory and I/O communication = a set of wires + a message protocol
- ✓ typically contains hundreds of data, address and control lines.
- ✓ each line carries only 1 bit at a time, therefore the bus width
 and frequency are key factors in performance

Bus interconnection scheme

Stallings, W. (2006) Computer Organization & Architecture: Designing for Performance (7th Edition).

I/O bus architecture

- > Typical bus structure
 - ✓ data lines
 - provide a path for moving data between system modules
 - ✓ address lines
 - used to designate the source or destination of the data
 - ✓ control lines
 - transmit commands and timing information between modules
 - memory read/write, I/O read/write, bus request/grant, etc.

I/O bus architecture

- Typical bus interconnection layout
 - ✓ computer systems contain multiple types of buses at different levels of the hierarchy
 - ✓ memory bus, SCSI, ISA, PCI, USB, FireWire, etc.

I/O bus architecture

- Basic hardware I/O communication architecture
 - ✓ each I/O device consists of two parts:
 - the controller or module, containing most of the electronics
 - the device proper, such as a disk drive
 - ✓ the job of the controller is (a) to control the I/O and (b) handle
 bus access for it

I/O devices & modules

- Why I/O modules? Why not connecting the devices directly to the bus?
 - ✓ wide variety of peripherals with various operation methods: don't want to incorporate heterogeneous logic into CPU
 - ✓ modules offer a more unified hardware command interface
 - ✓ data transfer rate slower or faster than memory or CPU
 - ✓ different data and word lengths
 - ✓ multiplexing: one module serving several devices (ex: SCSI)

> Functions of an I/O module

- ✓ interface to CPU and memory via system bus
- ✓ interface to one or more peripherals by custom data links.

I/O devices & modules

> Two main categories of I/O module-device interface

Parallel and serial I/O

I/O devices & modules

- Schematic structure of an I/O device
 - ✓ interface to the I/O module: control, data and status signals
 - ✓ interface with the physical/electrical apparatus

Stallings, W. (2006) Computer Organization & Architecture: Designing for Performance (7th Edition).

Block diagram of an I/O device

I/O devices & modules

- Typical I/O interface with the the I/O module ("host")
 - ✓ control registers
 - can be written by the host to start a command or change the mode of the device
 - ✓ status registers
 - contain bits read by the host that indicate whether a command has completed, a byte is available to be read from the data-in register, or there has been a device error
 - √ data registers (buffer)
 - data-in registers are read by the host to get input
 - data-out registers are written by the host to send output

I/O devices & modules

- I/O interface with the physical/electrical apparatus
 - ✓ transducer
 - converts between binary data and analog electromechanical events specific to the device
 - ex: pressing a key on the keyboard generates an electronic signal and transduced into the ASCII bit pattern
 - ex: in a disk, bits in the device's buffer are transduced from/to magnetic patterns on the moving disk

I/O devices & modules

I/O controllers or "modules"

✓ intermediate between the I/O device (peripheral) and CPU or

memory

Generic model of an I/O module

Stallings, W. (2006) Computer Organization & Architecture: Designing for Performance (7th Edition)

I/O devices & modules

- Schematic structure of an I/O module
 - ✓ interface also based on control, status and data lines.
 - ✓ basically an adapter/multiplexer with a buffer (data registers)

Block diagram of an I/O module

Stallings, W. (2006) Computer Organization & Architecture: Designing for Performance (7th Edition).