Principles of Operating Systems
UNIVERSITY CS 446/646

OF NEVADA

eReno

5. Input/Output

René Doursat

Department of Computer Science & Engineering
University of Nevada, Reno

Spring 2006

Principles of Operating Systems
CS 446/646

5. Input/Output
6. File System
/. Case Studies

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

Principles of Operating Systems

CS 446/646

5. Input/Output

a.
b.

C.

4/11/2006

Overview of the O/S Role in I/O
Principles of I/O Hardware
I/O Software Layers

Disk Management

CS 446/646 - Principles of Operating Systems - 5. Input/Output

Principles of Operating Systems

CS 446/646

5. Input/Output

a.
b.

C.

4/11/2006

Overview of the O/S Role in I/O
Principles of I/O Hardware
I/O Software Layers

Disk Management

CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.a Overview of the O/S Role in I/O

» The I/O subsystem is layered

User process

User User
rogram
space< prog
Rest of the operating system
Kernel< Device-independent software
space
" y b
Printer Camcorder CD-ROM
driver driver driver
b b Y
Hardware Printer controller | [Camcorder controller‘ ICD-ROM r:ontrollerl

=
Devices % ﬁf@@
= =)

Layers of the 1/0 system

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.a Overview of the O/S Role in I/O

» The I/O subsystem is layered

4/11/2006

kernel
bl
©
= kernel I/0O subsystem
@
SCSl keyboard mouse PCl bus floppy ATAPI
device device device L device device device
driver driver driver driver driver driver
SCSl keyboard mouse PCI bus floppy ATAPI
device device device L device device device
controller controller controller controller controller controller
Q
o
T T T
°
©
= ATAPI
Scsl floppy-disk| | devices
devices keyboard mouse o0 PCI bus drives (disks,
tapes,
drives)

A kernel I/O structure

CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.a Overview of the O/S Role in I/O

» Chart of operating system responsibilities in I/O

8D - The O/S Is responsible for controlling access to
all the I/O devices

v" the O/S hides the peculiarities of specific hardware devices
from the user

v" the O/S issues the low-level commands to the devices, catches
Interrupts and handles errors

v" the O/S relies on software modules called “device drivers”

v"the OIS provides a device-independent API to the user
programs, which includes buffering

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 7

Principles of Operating Systems

CS 446/646

5. Input/Output

a.
b.

C.

4/11/2006

Overview of the O/S Role in I/O
Principles of I/O Hardware
I/O Software Layers

Disk Management

CS 446/646 - Principles of Operating Systems - 5. Input/Output

Principles of Operating Systems
CS 446/646

5. Input/Output

b. Principles of I/O Hardware

v" The diversity of I/O devices
v /0 bus architecture

v /0 devices & modules

v" CPU-I/O communication

c. 1/O Software Layers

d. Disk Management

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.b Principles of I/O Hardware
The diversity of 1/0 devices

» Great variety of 1/O devices
v' storage devices
= disks
= tapes
v’ transmission devices
= network cards
" modems
v" human-interface devices
= screen
= keyboard
= mouse

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

10

5.b Principles of I/O Hardware
The diversity of 1/0 devices

» 1/0 devices vary in many dimensions (but these
categories have fuzzy boundaries)

v main distinction: character-stream vs. block
= block devices transfer blocks of bytes as units
* block devices store information in fixed-size blocks
* Dblocks can be accessed independently from each other
« disks are typical block devices; tapes not so typical
= character devices transfer bytes one by one

e accepts or delivers a stream of characters without block
structure

« not addressable, not seekable

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 11

5.b Principles of I/O Hardware
The diversity of 1/0 devices

> 1/0 devices vary in many dimensions (cont’d)
v’ sequential vs. random-access
= sequential devices transfer in a fixed order they determine

» random-access devices can be “seeked” at any storage
location

v"synchronous vs. asynchronous
= synchronous devices have predictable transfer times
= asynchronous devices are irregular

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 12

5.b Principles of I/O Hardware
The diversity of 1/0 devices

» 1/0 devices vary in many dimensions (cont’'d 2)
v' sharable vs. dedicated

= sharable devices may be used concurrently by several
processes or threads

= dedicated devices cannot
v' speed of operation

= devices speed range from a few bytes to a few GB per
second

v' read-write, read only, or write only
= some devices are both input/output, others only one-way

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 13

> 1/0 devices vary in many dimensions

5.b Principles of I/O Hardware

The diversity of I/0 devices

aspect variation example
data-transfer mode character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
I/O direction read only CD-ROM
write only graphics controller
readbwrite disk

4/11/2006

Characteristics of I/O devices

CS 446/646 - Principles of Operating Systems - 5. Input/Output

14

5.b Principles of I/O Hardware
The diversity of 1/0 devices

» 1/0 devices vary hugely in data transfer speed

Gigabit Ethernet

Graphics display

Hard disk

Ethernet

Optieal disk

Scanner

Laser printer

Floppy disk

Modem

Monse

Kevboard

W

==
<
==
=
=
b4
=
4
=
=
=
S
=
=
==
-]

10°
Data Rate (bps)

Typical I/0O device data rates

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.b Principles of I/O Hardware
The diversity of 1/0 devices

Device Data rate

Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Telephone channel 8 KB/sec
Dual ISDN lines 16 KB/sec
Laser printer 100 KB/sec
Scanner 400 KB/sec
Classic Ethernet 1.25 MB/sec
USB (Universal Senal Bus) 1.5 MB/sec
Digital camcorder 4 MB/sec
IDE disk 5 MB/sec
40x CD-ROM 6 MB/sec
Fast Ethemet 12.5 MB/sec
|SA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec
FireWire (IEEE 1394) 50 MB/sec
XGA Monitor 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec
Ultrium tape 320 MB/sec
PCI bus 528 MB/sec
Sun Gigaplane XB backplane 20 GB/sec

Some typical device, network, and bus data rates

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.b Principles of I/O Hardware
/0 bus architecture

» CPU, memory and I/O devices communicate via buses

v asystem bus is the “public transportation” of memory and 1/0
communication = a set of wires + a message protocol

v' typically contains hundreds of data, address and control lines

v"each line carries only 1 bit at a time, therefore the bus width
and frequency are key factors in performance

CPU Memory || ***| Memory /O e /O

Control Lines
L 11 HAN 1 1] | [11

Address Lines Bus
| | | 1 | | |

Data Lines

Bus interconnection scheme

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 17

5.b Principles of I/O Hardware
/0 bus architecture

» Typical bus structure
v’ data lines
= provide a path for moving data between system modules
v'address lines
» used to designate the source or destination of the data
v'control lines

= transmit commands and timing information between modules
= memory read/write, I/O read/write, bus request/grant, etc.

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 18

5.b Principles of I/O Hardware
/0 bus architecture

» Typical bus interconnection layout

v’ computer systems contain multiple types of buses at different
levels of the hierarchy

v memory bus, SCSI, ISA, PCI, USB, FireWire, etc.

. Memory bus
R ., CPU Ty PC' LT FITTTE Pﬂaln
fscsl | [cache bridge memory
Y bus
- SCSI 4] SC5I || SCS| Video Network
| scanner [| disk [|controller confroller| |controller

Sound Printer ISA
card controller bridge

Modem

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 19

5.b Principles of I/O Hardware
/0 bus architecture

» Basic hardware /0O communication architecture
v"each I/O device consists of two parts:
= the controller or module, containing most of the electronics
= the device proper, such as a disk drive

v"the job of the controller is (a) to control the 1/0 and (b) handle
bus access for it

CPU, |
Memory » 1/0O controller —> I/O device or
1 ’ B or “mOdUIe” — “perlpheraln

bus bridge bus

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 20

5.b Principles of I/O Hardware
/0 devices & modules

» Why I/0O modules? Why not connecting the devices
directly to the bus?

v"wide variety of peripherals with various operation methods:
don’t want to incorporate heterogeneous logic into CPU

modules offer a more unified hardware command interface
data transfer rate slower or faster than memory or CPU
different data and word lengths

v multiplexing: one module serving several devices (ex: SCSI)

NN X

» Functions of an I/0 module
v'interface to CPU and memory via system bus
v"interface to one or more peripherals by custom data links

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 21

5.b Principles of I/O Hardware
/0 devices & modules

» Two main categories of I/O module-device interface

1O Module
To svstem LITTTTTT] To
h:u»' E—— Buffer peripheral
—_— __ —
(a) Parallel 10
1/O Module
To svstem LITTITTTIT] To
];u.,- Buffer peripheral
.

(b} Serial 1Oy

Parallel and serial 1/0

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 22

5.b Principles of I/O Hardware
/0 devices & modules

» Schematic structure of an 1/O device
v"interface to the 1/0 module: control, data and status signals
v"interface with the physical/electrical apparatus

4/11/2006

Control | Status

A Drata bits

signals from signals to to and from
L0 module I/O module I/0 module
Yy Y
Control Buffer
Logic ’:
J0gle
Transducer

T

to and from

Data {(device-unique)
environment

Block diagram of an I/O device

CS 446/646 - Principles of Operating Systems - 5. Input/Output 23

5.b Principles of I/O Hardware
/0 devices & modules

» Typical I/O interface with the the 1/O module (*host”)
v’ control registers

= can be written by the host to start a command or change
the mode of the device

v’ status registers

= contain bits read by the host that indicate whether a
command has completed, a byte is available to be read
from the data-in register, or there has been a device error

v' data registers (buffer)
= data-in registers are read by the host to get input
= data-out registers are written by the host to send output

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 24

5.b Principles of I/O Hardware
/0 devices & modules

» 1/O interface with the physical/electrical apparatus

v' transducer

= converts between binary data and analog electro-
mechanical events specific to the device

= exX: pressing a key on the keyboard generates an
electronic signal and transduced into the ASCII bit pattern

= ex: In adisk, bits in the device’s buffer are transduced
from/to magnetic patterns on the moving disk

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 25

5.b Principles of I/O Hardware

/0 devices & modules

» 1/O controllers or “modules”
v'intermediate between the 1/0 device (peripheral) and CPU or

4/11/2006

memory

Address Lines

. System
Data Lines Bus

Control Lines

IY/O Module

£] L LY
Links to
peripheral
devices

Generic model of an I/0 module

CS 446/646 - Principles of Operating Systems - 5. Input/Output 26

5.b Principles of I/O Hardware
/0 devices & modules

» Schematic structure of an I1/O module
v interface also based on control, status and data lines
v' Dbasically an adapter/multiplexer with a buffer (data registers)

Interface to Interface to
System Bus External Device

~A ~A—

. Data
— Data Registers | t— — ['"[;"“_':“ﬂl E >
Data evice Status
I inﬁ‘{ Interface < ?
—P] Status/Control Registers ‘1 Logic P Control
h 4
Address < > 5 > Dat
. = ata
Lines U External
o Device .
i — Status
Logic Interface
Control i
Lines < P Logic p Control

Block diagram of an 1/0 module

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 27

5.b Principles of I/O Hardware
CPU-1/O communication

» Three communication protocols between CPU and I/O
1. Programmed I/O (or “polling” or “busy waiting”)

= the CPU must repeatedly poll the device to check if the I/O
request completed

2. Interrupt-driven I/O

= the CPU can switch to other tasks and is (frequently)
Interrupted by the I/O device

3. Direct Memory Access (DMA)

= the CPU is involved only at the start and the end of the
whole transfer; it delegates control to the I/O controller that
accesses memory directly without bothering the CPU

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 28

5.b Principles of I/O Hardware
CPU-1/O communication

1. Programmed I/O e ol
v the CPU issues an /O command @ i ©
(on behalf of a process) to an 1/0 g, 76
module L T
®
v" the CPU (the process) then busy =5
waits for completion before _n
proceeding
v also called “busy waiting” or WRITE 7
“polling”
@
1
WRITE
4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 29

5.b Principles of I/O Hardware
CPU-1/O communication

[ssue Read
e command to
/'O module

CPU — /O

Read status
of O
maodule

Error

Read word
from I/0
Module

Write word

. CPU — memory
into memory :

Mext instruction

(a) Programmed /O

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.b Principles of I/O Hardware
CPU-1/O communication

1. Programmed /O
v" Dbasic handshake protocol between CPU and I/0O module

4/13/2006

d.

host repeatedly polls occupied bit in status register of 1/0
module until cleared (this is the busy waiting part)

host sets write bit in command register of /O module and
writes byte into data-out register of 1/0 module

c. host sets command-ready bit of /0 module

. 1/0 module notices command-ready bit and sets occupied bit

/0 module reads command and data-out registers and
orders I/O device to perform I/O

when suceeded, I/0 module clears command-ready bit, error
bit and occupied bit

CS 446/646 - Principles of Operating Systems - 5. Input/Output 31

» Example: writing a string to the printer

User .
space

Kernel d
space

5.b Principles of I/O Hardware

CPU-I/O communication

4/13/2006

String to
be printed
J Printed
page
ABCD J
EFGH
(a)

Mext =

ABCD
EFGH

Printed
page

l

A

Steps in printing a string

CS 446/646 - Principles of Operating Systems - 5. Input/Output

Mext -*

ABCD
EFGH

AB

32

5.b Principles of I/O Hardware
CPU-1/O communication

» Example of “driver” logic: writing a string to the printer

1. ...using programmed I/O:
copy_from_user(buffer, p, count); [* p is the kernel bufer #/
for (i=0; i< count; i++) { /* loop on every character */
while (*printer_status_reg = READY) ;/* loop until ready */
printer _data_register = p[i]; [output one character */
h

return_to_user();

Programmed I/O code

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 33

5.b Principles of I/O Hardware
CPU-1/O communication

1. Programmed I/O problems

v" the I/O device (module) is passive and needy: it does not alert
the CPU that it is ready and does not transfer data to/from
memory by itself

v" the CPU needs to continually check the 1/O status and data
registers

= to minimize the CPU waiting time

= put also to avoid overflow in the small buffer of the
controller: needs to be regularly cleared

v"naturally this is a waste of CPU time if the I/O transfer is slower
than the CPU. . . which it always Is!

v" no longer an option today

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 34

2.

5.b Principles of I/O Hardware

CPU-I/O communication

Interrupt-driven 1/O

v

v

4/13/2006

the CPU issues an I/O command (on
behalf of a process) to an /O module

... but does not wait for completion;
Instead, It continues executing
subsequent instructions

then, later, it is interrupted by the 1/O
module when work is complete

note: the subsequent instructions
may be in the same process or not,
depending on whether 1/0 was
requested asynchronously or not:
process wait = CPU walit!

User /O
Program Program
—==, s , et
B R e 70
WRITE *- ___________ Command
PR " Interrupt
* '."." y Tl Handlgr
11:: '1 i e
—— ¥]
WRITE ; B3 @
o < END
x
I
WRITE
35

CS 446/646 - Principles of Operating Systems - 5. Input/Output

4/13/2006

5.b Principles of I/O Hardware
CPU-1/O communication

[ssue Read
= command o
'O module

CPU — /O

Read status
of O
madule

O — CPU

Error
condition
Read word
from I/O /0 — CPU

Module

Write word

. CPU — memory
into memory :

MNext instruction
(a) Programmed /O

Issue Bead

=+ command to

/O module

Read status
of IO
module

Ready

Read word
from IO
Module

Write word
into memory

Mext instruction

PU — [/O
Do something
= clse

=== [ntermupt

1/ — CPU

Error
condition

PLU — memory

by Interrupt-driven IO

CS 446/646 - Principles of Operating Systems - 5. Input/Output

36

2.

Interrupt-driven 1/O
v CPU senses interrupt

4/13/2006

5.b Principles of I/O Hardware
CPU-1/O communication

Fetch Stage Execute Stage Interrupt Stage

START L AR

In a third stage of the
fetch/execute cycle

control (PC) transfers to

an Interrupt handler In User Program InlermpiHan(ller
kernel space, 1
which branches to O/S . .
routines specific to the . .
type of interrupt; et |

. occurs here i+1 <
the CPU is eventually .
returned to this user .
program . . . or another M

CS 446/646 - Principles of Operating Systems - 5. Input/Output 37

5.b Principles of I/O Hardware
CPU-1/O communication

» Example of “driver” and “interrupt handler” logic:
writing a string to the printer

2. ...using Interrupts:
copy_from_user(buffer, p, count); if (count ==0) {

= enable_interrupts(), unblock_user();
8’ only | while (*printer_status_reg != READY) ;| } else { el
. 1stchar | *printer_data_register = p[0]; *printer_data_register = p[i]; 'g
G>J scheduler(); count = count - 1; ©
= =10+ 1; =
} =)
acknowledge_interrupt(); =
return _from_interrupt(). 5
=

(a) (b)

Interrupt-driven 1/0O code: (a) system call and (b) interrupt service procedure

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 38

5.b Principles of I/O Hardware
CPU-1/O communication

2. Interrupt-driven I/O

v relies on an efficient hardware mechanism that saves a small
amount of CPU state, then calls a privileged kernel routine

v"note that this hardware mechanism is put to good use by the
OIS for other events:

= |n virtual memory paging, a page fault is an exception that
raises an interrupt

= gystem calls execute a special instruction (TRAP), which is
a software interrupt

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 39

5.b Principles of I/O Hardware
CPU-1/O communication

2. Interrupt-driven I/O problems
v" the I/O device (module) is more active but still very needy

v" wasteful to use an expensive general-purpose CPU to feed a
controller 1 byte at a time

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 40

5.b Principles of I/O Hardware
CPU-1/O communication

3. Direct Memory Access (DMA)
v'avoids programmed/interrupted 1/O for large data movement

v’ requires a special-purpose processor called DMA
controllerbypasses CPU to transfer data directly between I/O
device and memory

v"the handshaking is performed between the DMA controller and
the 1/0 module: in essence, the DMA controller is going to do
the programmed I/O instead of the CPU

v"only when the entire transfer is finished does the DMA
controller interrupt the CPU

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 41

5.b Principles of I/O Hardware
CPU-1/O communication

Issue Read Issue Read PU — /O Issue Read PU — DMA
=» command to [|CPU — IO =+ command o Do something block command Do something
VO module [~ else to /O module [T alse

YO module

Read status Read status === [ntermupt Eead status R —
of O /O — CPU of 10 P of DMA .
module module /0 — CPU module DMA — CPU

Mext instruction

Error Error
condition condition {c) Direct memory access
Ready
Read wornd Eead word
from /O /O — CPU from V'O /0 — CPU

Module Module

Write word
into memory

Write word

. CPU — memory
into memory :

PU — memory

Mext instruction Mext instruction
(a) Programmed /O (b Imterrupt-driven 'O

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.b Principles of I/O Hardware
CPU-1/O communication

3. Direct Memory Access (DMA)

1. device driver is told to
transfer disk data to
buffer at address X CPU
5. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C |
increasing memory bytes from disk to buffer cache
address and decreasing at address X
CuntiC=0
6. when C = 0, DMA DMA/bus/interrupt } — X
interrupts CPU to signal controller Gl aman.abus memory | buffer
transfer completion
§ PCI bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA
controller

IDE disk controller

@) @)
@) @

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

Steps in a DMA transfer

5.b Principles of I/O Hardware
CPU-1/O communication

» Example of “driver” logic: writing a string to the printer
3. ...using DMA:

copy_from_user(buffer, p, count); | acknowledge_interrupt();

set_up_DMA _controller(); unblock_user();

scheduler(); return_from _interrupt()
(a) (b)

DMA-supported I/O code: (a) system call and (b) interrupt service procedure

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 44

5.b Principles of I/O Hardware
CPU-1/O communication

» Summary

4/13/2006

No Interrupts

Use of Interrupts

1/O-to-memory transfer
through processor

Programmed 'O

Interrupt-drven L/O

Direct I/O-to-memory
transfer

Direct memory access (DMA)

CS 446/646 - Principles of Operating Systems - 5. Input/Output

45

Principles of Operating Systems
CS 446/646

5. Input/Output

b. Principles of I/O Hardware

v" The diversity of I/O devices
v 1/0 bus architecture

v /0 devices & modules

v" CPU-I/O communication

c. 1/O Software Layers

d. Disk Management

4/13/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

46

Principles of Operating Systems

CS 446/646

5. Input/Output

c. 1/O Software Layers

v
v
v
v
v

Overview of the I/O software
Interrupt handlers

Device drivers
Device-independent I/O software
User-level I/O system calls

d. Disk Management

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

47

5.c 1/O Software Layers
Overview of the I/O software

» (Goals and services of the I/O software
v"device independence

= write programs that can access I/O devices without
specifying them or knowing them in advance

= ex: reading a file from a disk, whether floppy, magnetic,
CD-ROM, etc.

= no need to modify the program if a new device comes in
v"uniform naming (“mounting”)

= abstract naming space independent from physical device

= npaming should be a string and/or integer ID, again without
device awareness

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 48

5.c 1/O Software Layers
Overview of the 1/O software

» (Goals and services of the I/O software
v"error handling
= |ower layers try to handle the error before upper levels

= controller hardware should correct error first; if it cannot, then
driver software (for ex. by reissuing the command), etc.

= upper levels can remain unaware of “oumps” at lower levels

v synchronous vs. asynchronous transfers

= most physical I/O is asynchronous (interrupt-driven)

= QIS should make it look synchronous (blocking) to processes
v" Dbuffering

= decouple transfer rates and insulate data from swapping

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 49

5.c 1/O Software Layers
Overview of the 1/O software

» The I/0O component of the O/S is organized in layers
1. interrupt handlers
2. device drivers
3. device-independent I/O
4. user-level I/O system calls

User-level /O software

Device-independent operating system software

Device drivers

=N w B

Interrupt handlers

Hardware

Typical layers of the 1/O software subsystem

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

5.c 1/O Software Layers
Overview of the 1/O software

» Abstraction, encapsulation and layering

v'any complex software
engineering problem

v"layers can be modified >
independently without / -
affecting layers above o offers
and below === N services

uses
: .
\ N-1 services

design of a generic interface

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 51

5.c 1/O Software Layers
Overview of the 1/O software

» Typical flow of control through the I/O layers upon an
/0 request

/O
Layer / reply /O functions
/O User processes Make 1/0O call; format I/O; spooling
request ~ —

]
+ Device-independent

| software Naming, protection, blocking, buffering, allocation

Set up device registers; check status
(a) sys call i (b) interrupt service
Wake up driver when /O comp-leted

Device drivers

Interrupt handlers

— - = = -
AN

Hardware Perform I/O operation

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 52

5.c 1/O Software Layers
Interrupt handlers

1. Interrupt handler routines

v

4/18/2006

Interrupts (asynchronous, external to process) basically use
the same mechanism as exceptions and traps (synchronous,
Internal to process)

when an interrupts happen, the CPU saves a small amount of
state and jumps to an interrupt-handler routine at a fixed
address in memory

the interrupt routine’s location is determined by an interrupt
vector

CS 446/646 - Principles of Operating Systems - 5. Input/Output 53

5.c 1/O Software Layers
Interrupt handlers

1. Interrupt handler routines (cont’d)

nonmaskable,
used for various
error conditions

maskable, used for
device-generated
interrupts

4/18/2006

{

vector number

description

Qo ~NOOOk,WN -0

10
11
12
13
14
15
16
17
18
19D31

P 32p255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow
bound range exception
invalid opcode

device not available
double fault

coprocessor segment overrun (reserved)
invalid task state segment
segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)
floating-point error
alignment check

machine check

(Intel reserved, do not use)
maskable interrupts

Intel Pentium processor event-vector table

CS 446/646 - Principles of Operating Systems - 5. Input/Output

54

5.c 1/O Software Layers
Interrupt handlers

1. Interrupt handler routines
v' typical steps followed by an interrupt routine:

d.

® o o o

f.

save any registers not saved by the interrupt hardware

set up a context (TLB, MMU, page table) for the routine

set up a stack for the routine

acknowledge the interrupt controller

extract information from the 1/O device controller’s registers
etc.

v'interrupt processing is a complex operation that takes a great
number of CPU cycles, especially with virtual memory

4/18/2006

CS 446/646 - Principles of Operating Systems - 5. Input/Output 55

4/18/2006

5.c 1/O Software Layers

Interrupt handlers

Hardware

—— A

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Software

——A—

k4

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Simple interrupt processing

CS 446/646 - Principles of Operating Systems - 5. Input/Output

56

5.c 1/O Software Layers
Device drivers

2. Device drivers

v

NN X

AN

4/18/2006

each |/O device needs a device-specific code to control it
device manufacturers supply drivers for several popular O/S
a driver handles one type of device or one class (ex: SCSI)

the driver logic is generally executed in kernel space (although
microkernel architectures might push it in user space)

drivers should “snap into place” in the kernel through device-
Independent interfaces (see next section)

two main categories of drivers (two higher-level interfaces)
= Dblock-device drivers: disks, etc.
= character-device drivers: keyboards, printers, etc.

CS 446/646 - Principles of Operating Systems - 5. Input/Output 57

5.c 1/O Software Layers
Device drivers

2. Device drivers (cont’d)
v" adriver has several functions

4/18/2006

accept abstract read/write requests from the device-
Independent software above and translate them into
concrete I/O-module-specific commands

schedule requests: optimize queued request order for best
device utilization (ex: disk arm)

Initialize the device, if needed
manage power requirements
log device events

CS 446/646 - Principles of Operating Systems - 5. Input/Output 58

5.c 1/O Software Layers
Device drivers

2. Device drivers (cont’d)
v"typical code organization of a device driver:

4/18/2006

a.
b.

check validity of input parameters coming from above

If valid, translate to concrete commands, e.g., convert
block number to head, track & sector in a disk’s geometry

check if device currently in use; if yes, queue request; if
not, possibly switch device on, warm up, initialize, etc.

. Issue appropriate sequence of commands to controller
. If needs to wait, block
f. upon interrupted from blocking, check for errors and pass

data back

. process next queued request

CS 446/646 - Principles of Operating Systems - 5. Input/Output 59

5.c 1/O Software Layers
Device drivers

2. Device drivers (cont’d)
v'adriver code must be reentrant to allow for nested interrupts
v’ adriver must expect to be called a 2nd time before the 1st call

IS finished
Interrupt
User Program Handler X
=

Interrupt
andler Y

A

Nested interrupt processing

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 60

5.c 1/O Software Layers
Device-independent I/O software

3. Device-independent I/O software
v"generic functions provided by the kernel I/0 subsystem:
= uniform interfacing for device drivers
= puffering
= error reporting
= providing a device-independent block size

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

61

5.c 1/O Software Layers
Device-independent I/O software

3. Device-independent I/O software (cont’d)
v"uniform interfacing

= make all I/O devices look more or less the same, so that
the O/S doesn'’t need to be hacked every time a new
device comes along

Operating system Operating system
Disk driver Printer driver Keyboard driver Disk driver Printer driver Keyboard driver

(a) (b)
(a) Without and (b) with a standard driver interface

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 62

5.c 1/O Software Layers
Device-independent I/O software

Device-independent 1/0O software (cont’d)
v"uniform interfacing
= therefore, generally one unified interface

= possibly additional specialized extensions for the main
device categories

* block devices: read(), write()
 random-access block devices: seek()
 character-stream devices: get(), put()

« network devices: network socket interface similar to
file system

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 63

5.c 1/O Software Layers
Device-independent I/O software

3. Device-independent I/O software (cont’d)
v' buffering = “decoupling”

4/18/2006

memory area that stores data in kernel space while
transferred between device and application

cope with a speed mismatch between producer and
consumer (ex: modem thousand times slower than disk)

adapt between services with different data-transfer sizes
(ex: fragmentation and reassembly of network packets)

“copy semantics”. cache data while transferred so it is not
affected by changes from application or swapping

read ahead (locality principle)

CS 446/646 - Principles of Operating Systems - 5. Input/Output 64

5.c 1/O Software Layers
Device-independent I/O software

3. Device-independent I/O software (cont’d)
v" buffering
a) unbuffered input —s context switch for each transferred byte
b) buffering in user space — what happens if paged out?
¢) buffering in kernel, copy to user space — what if buffer full?
d) double-buffering in kernel

User process

I'4
User
=] [@] [@] [@
Kernel { £| éz
space —
4
3

} A

1

s 7 a7 15._:‘—1 7 e

Modem Modem Madem Modem
(a) (b) (c) (d)

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 65

5.c 1/O Software Layers
Device-independent I/O software

3. Device-independent I/O software (cont’d)
v" buffering

= double buffering: further decouples producer from consumer
(ex: modem fills 2nd buffer while 1st buffer is written to disk)

= circular buffering: extension suitable for rapid bursts of 1/0

Operating System User Process Operating System User Process
I || || »] L/O Device In E'@\ Move o]
ia) No buffering {¢) Double buffering

Operating System User Process Operating System User Process

=

(d} Circular buffering

In |=,—| | Move o /O Device In +: |:| +; ‘,', Move S

(b) Single buffering

CS 446/646 - Principles of Operating Systems - 5. Input/Output 66

5.c 1/O Software Layers
Device-independent I/O software

Device-independent I/O software (cont’d)
v" buffering in networking

, User process

¥
User
5
Kernel 1|r1
space — —
~
v Network !
o Networ
] controller]
3
[— JA
Network"

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 67

5.c 1/O Software Layers
User-level I/O system calls

4. User-level I/0 system calls

v"utility library procedures wrapping system calls; for example,
formatting: printf(), scanf()

v spooling: a daemon centralizes access requests to printer and
other devices

/O
Layer / reply /O functions
/O User processes /| Make /0 call; format I/0O; spooling
request _"'1 AI*
Device-independent Naming, protection, blocking, buffering, allocation
| software 4
|
Device drivers + Set up device registers; check status
I
Interrupt handlers + Wake up driver when /O completed
k i I
Hardware Perform I/O operation

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 68

4/18/2006

5.c 1/O Software Layers

User-level I/O system calls

I/O completed,

user . :
request I/O input data available, or
process
output completed

| A

L]
system call return from system call

I ——— |
kernel

buffered? can already

1/O subsystem

satisfy request?

yes

send request to device
driver, block process if
appropriate

kernel
1/0 subsystem

transfer data
(if appropriate) to process,
return completion
or error code

[

) 4 _ —
process request, issue

determine which 1/O

ccmr;rjands lo rionltlrollter, device completed, indicate state
configure controller to driver
block until interrupted change to /O subsystem
F
interrupt receive interrupt, store
device controller commands handl(fr data in device-driver buffer
if input, signal to unblock
device driver
F ¥
1
interrupt
¥ _— . |
device
monitor device, controller

interrupt when I/O
completed

I/O completed,
generate interrupt

The life-cycle of an I/O request

CS 446/646 - Principles of Operating Systems - 5. Input/Output

69

Principles of Operating Systems

CS 446/646

5. Input/Output

c. 1/O Software Layers

v
v
v
v
v

Overview of the I/O software
Interrupt handlers

Device drivers
Device-independent I/O software
User-level I/O system calls

d. Disk Management

4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

70

4/20/2006

D.

Principles of Operating Systems
CS 446/646

Input/Output

d. Disk Management

v" Physical disk characteristics
v" Disk formatting
v" Disk scheduling

CS 446/646 - Principles of Operating Systems - 5. Input/Output

71

5.d Disk Management
Physical disk characteristics

» The memory hierarchy

The memory hierarchy

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

cost per bit

capacity

frequency of ac

access time

72

5.d Disk Management
Physical disk characteristics

» Rigid (“hard”) magnetic disks
v remain today the most important secondary memory (although
the gap between CPU and disk performance has increased)
v"diameter shrunk from 50 cm down to 12 or 3 cm (notebooks)
v “Winchester” disks are sealed
v components of a disk drive:
= one or several aluminum platters stacked vertically
= platters have magnetizable coating on both sides

= one pair of read/write movable heads per platter surface
(heads hover on air cushion, don’t make contact)

= all heads mechanically fixed so they move together and
are all at same distance from center

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 73

5.d Disk Management
Physical disk characteristics

Readiwrite head (1 per surface) Direction of

arm mofion

EE—
e

surface 9

T Platier —

surface 8§

surface 7

surface 6

sSurface 5

surface 4

surface 3

surface 2

surface 1

surface (4

S

Spindle Pk

Components of a disk drive

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 74

5.d Disk Management
Physical disk characteristics

» In modern systems, read and write heads are separate
v"the write head is an induction coil: produces a magnetic field

v' the read head is a magnetoresistive (MR) sensor: resistance
depends on magnetic field, thus generates variable voltage

sensor

Write/read heads

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 75

5.d Disk Management
Disk formatting

» Data organization and formatting

v' after manufacturing, there is no information on the disk: just a
blank slate (continuous surface of magnetizable metal oxide)

v" before a disk can be used, each platter must receive a low-
level format (“physical format”) done by code in I/O controller:

= gseries of concentric tracks (not grooves)
= each tracks contains sectors, separated by short gaps
v" then the disk may be partitioned
v"finally, each partition receives a high-level format (“logical”):
= poot sector, free storage map, file allocation table, etc.
— we’'ll see more of this in the File System chapter

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 76

5.d Disk Management
Disk formatting

» A disk is addressed as a 1-D array of logical blocks
v' translation between logical block # and track # + sector #

Sectors Tracks

Inter-sector ga

Y ., Inter-track gap

Disk data layout

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

i

5.d Disk Management
Disk formatting

» Vertically aligned tracks on multiple platters are called
“cylinders”

Tracks and cylinders

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 78

5.d Disk Management
Disk formatting

» Disk layout methods

v’ constant angular velocity: pie-shaped sectors, same number
per track — simple but wasted space on the long outer tracks

v multiple zone recording: fixed-length sectors, variable number
per track — greater data density but more complicated access

{a) Constant angular velocity {b) Multiple zoned recording

Comparison of disk layout methods

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 79

5.d Disk Management
Disk formatting

» Virtual disk geometry

v most disks are physically MZR but may still present a simpler,
virtual CAV geometry to the O/S

v" the OIS driver uses cylinder, track, sector coordinates (X, Y, z)
which are remapped into zones by the 1/O controller

Physical geometry vs. virtual geometry

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 80

5.d Disk Management
Disk formatting

» Tracks are divided into fixed-length sectors
v'each sector typically contains
= 512 bytes of data
= preceded by a preamble (for head synchronization)
= followed by an error-correcting code (ECC)

Intersector gap

/ _
" p =TT I &/
Eldl.[i_’_._ - - EC"F-"'G
/ e an O y m H
;a"’f‘\\\\\\ el Read/write
s ﬁf'\f, al Direction head
e * 7 of a_rmi
;'(\ " Width of motion HD_)
. s is
Track ™" 1 bitis arm

width i< 0.1 to 0.2 microns
5-10 microns
A portion of a disk track showing two sectors

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

81

5.d Disk Management
Disk scheduling

» Disk performance parameters
v’ seek time: time it takes to position the head at the track

v'rotational delay: time it takes for the beginning of the sector to
reach the head

v’ access time = seek time + rotational delay
v’ transfer time: time required for sector data transfer

Wait for Wait for Seek Rotational Data
Device Channel Delay Transfer

| TETT T L] T frmmmmmeeee- T —— I

< Device Busy >

Timing of a disk I/O transfer

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 82

5.d Disk Management
Disk scheduling

» Disk performance parameters
v’ average seek time typically < 10 ms (thanks to small diameter)
v' rotational speed r ~7,500 rpm = 1r/ 8 ms — 4 ms rot. delay
v’ transfertime T=b/rN with b /N = transferred bytes / track

Parameter IBEM 360-KB floppy disk |WD 18300 hard disk
Number of cylinders 40 10601
Tracks per cylinder 2 12
Sectors per track 9 281 (avg)
Sectors per disk 720 35742000
Bytes per sector 512 512
Disk capacity 360 KB 18.2 GB
Seek time (adjacent cylinders) G msec 0.8 msec
Seek time (average case) 77 msec 6.9 msec
Rotation time 200 msec 8.33 msec
Motor stop/start time 250 msec 20 sec
Time to transfer 1 sector 22 msec 17 usec

Two opposites on the historical scale of disk parameters

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 83

5.d Disk Management
Disk scheduling

» Additional waiting time for device availability

v" processes blocked for 1/0 are put into device-specific queues

4/20/2006

Various I/O device queues

CS 446/646 - Principles of Operating Systems - 5. Input/Output

84

queue header PCB, PCB,
ready head - > +—
queue tail N registers registers
mag head +—=a
tape - =
unit 0 Bl 1=
MAT L hEA0 T o o o o o o o e e e e e = o = - - — — — ——
tape =
unitp1 tail — PCB, PCB,, PCB,
/ ; : il
disk head 1
unit 0 tail 4
_______ PEBs_
terminal head - T
unit 0 w4+

5.d Disk Management
Disk scheduling

» Why disk scheduling matters: a timing comparison
v' total average service time
Tservice = Tseek + Trotational + Ttransfer
=Tseek + 1/2r + b/rN

v'assume Tseek =4 ms, r = 7,500 rpm, 500 sectors per track x
512 bytes per sector — Ttransfer = 0.016 ms / sector

v' first case: reading 2,500 randomly scattered sectors
Tservice = 2,500 x (4 ms + 4 ms + 0.016 ms) = 20 seconds
v' first case: reading 2,500 contiguous sectors (in 5 tracks)
Tservice=4ms+5x4ms+ 2500 x0.016 ms =64 ms
— the order of sector access requests can make a big difference!

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 85

5.d Disk Management
Disk scheduling

» Overview of disk scheduling policies
v kernel-level scheduling: based on requestor process
= control of scheduling outside of disk management software
= not intended to optimize disk utilization
= main objective is process priorities defined by the O/S

= or following a blind, generic policy such as FIFO (no
starvation) or LIFO (locality)

v"driver-level scheduling: based on requested item
= goal is to optimize disk utilization

= the disk-specific software has expertise on how requests
should be ordered

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 86

5.d Disk Management
Disk scheduling

» Overview of disk scheduling policies
v" kernel-level (process) vs. driver-level (request) scheduling

Name Description Remarks
—
Selection according t{ requestor
RSS Fandom scheduling For analysis and simulation
FIFO First in first out Fairest of them all
PRI Priority by process Control outside of disk quene
management
LIFO Last in first out Maximize locality and

resource utilization

Selection according td requested item

SS5TF Shortest service time first High utilization, small queues
SCAN Back and forth over disk Better service distribution
C-SCAN One way with fast return Lower service variability
N-step-SCAN SCAN of Nrecords at a time Service guarantee
FSCAN N-step-SCAN with N = queue Load sensitive

size at beginning of SCAN

cycle

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 87

5.d Disk Management
Disk scheduling

» Comparing performance of scheduling policies

v
v

v

AN

4/20/2006

assume disk with 200 tracks

assume sequence of requested tracks in order received by
disk scheduler: 55, 58, 39, 18, 90, 160, 150, 38, 184

assume disk head initially located at track #100
we will compare FIFO, SSTF, SCAN, C-SCAN

CS 446/646 - Principles of Operating Systems - 5. Input/Output 88

track number

5.d Disk Management
Disk scheduling

» First-In-First-Out (FIFO)

25
50
75

100

[R W R -
=] h b
th o Ln

199

v’ requests are processed in arrival order
v' fair and no risk of starvation

v ok if few processes and requests cluster file sectors (locality)
v'generally bad, though, as interleaving causes random seek

jumps and waste of time

-

(a) FIFO Time

4/20/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output

(a) FIFO
(starting at track 100)

Next track Number of
accessed tracks
traversed
55 45
58 3
39 19
18 21
90 72
160 70
150 10
38 112
184 146
Average seek 553
length
89

track number

5.d Disk Management

Disk scheduling

» Shortest Service (Seek) Time First (SSTF)
v' select the request that requires the least arm movement, i.e.,

25
50
75

100

125

150

175

199

the shortest seek time

v much better than random or FIFO, however greater risk of
starvation: requests in remote disk area may remain unfulfilled

as long as there are shorter ones

-

4/20/2006

(b) SSTF

CS 446/646 - Principles of Operating Systems - 5. Input/Output

Time

(b) SSTE

(starting at track 100)

Next track Number of
accessed tracks
traversed
90 10
58 32
35 3
39 16
38 1
18 20
150 132
160 10
184 24
Average seek 275
length
90

track number

5.d Disk Management

Disk scheduling

» Scan or “elevator” algorithm (SCAN)
v' 1o prevent starvation, the arm moves in one direction only and

25
50
75

100

125

150

175

199

satisfies requests “en route”

v'arm direction is reversed when reaching the last track

(innermost or outermost)

v/ ...o0rassoon as reaching last request (LOOK:

the variant implemented in Linux)

|

4/20/2006

ic) SCAN

CS 446/646 - Principles of Operating Systems - 5. Input/Output

Time

(c) SCAN

(starting at track 100, in the
direction of increasing track

number)
Next track Number of
accessed tracks
traversed
150 50
160 10
184 24
90 94
58 32
35 3
39 16
38 1
18 20
Average seek 278
length
91

track number

5.d Disk Management
Disk scheduling

» Circular scan (C-SCAN)
v same as SCAN except the arm direction of movement is never

25
50
75

100

125

150

175

199

reversed

v"this reduces the maximum delay experienced by new requests

that arrived at the opposite end of the disk

4/20/2006

(d) C-SCAN Time

CS 446/646 - Principles of Operating Systems - 5. Input/Output

(d) C-SCAN

(starting at track 100, in the
direction of increasing track

number)
Next track Number of
accessed tracks
traversed
150 50
160 10
184 24
18 166
38 20
39 1
35 16
58 3
90 32
Average seek 358
length
92

4/20/2006

D.

Principles of Operating Systems
CS 446/646

Input/Output

d. Disk Management

v" Physical disk characteristics
v" Disk formatting
v" Disk scheduling

CS 446/646 - Principles of Operating Systems - 5. Input/Output

93

4/20/2006

D.

Principles of Operating Systems
CS 446/646

Input/Output

CS 446/646 - Principles of Operating Systems - 5. Input/Output

94

4/20/2006

Principles of Operating Systems
CS 446/646

6. File System
7. Case Studies

CS 446/646 - Principles of Operating Systems - 5. Input/Output

95

