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Layers of the I/O system

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 

Device-independent softwareDevice-independent software

5.a  Overview of the O/S Role in I/O

The I/O subsystem is layered
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5.a  Overview of the O/S Role in I/O

A kernel I/O structure

The I/O subsystem is layered

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition). 
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5.a  Overview of the O/S Role in I/O

Chart of operating system responsibilities in I/O

§D – The O/S is responsible for controlling access to 
all the I/O devices

the O/S hides the peculiarities of specific hardware devices 
from the user
the O/S issues the low-level commands to the devices, catches 
interrupts and handles errors 
the O/S relies on software modules called “device drivers”
the O/S provides a device-independent API to the user 
programs, which includes buffering
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5.b  Principles of I/O Hardware
The diversity of I/O devices

Great variety of I/O devices
storage devices

disks
tapes

transmission devices
network cards
modems

human-interface devices
screen
keyboard
mouse
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5.b  Principles of I/O Hardware
The diversity of I/O devices

I/O devices vary in many dimensions (but these 
categories have fuzzy boundaries)

main distinction: character-stream vs. block
block devices transfer blocks of bytes as units
• block devices store information in fixed-size blocks 
• blocks can be accessed independently from each other
• disks are typical block devices; tapes not so typical

character devices transfer bytes one by one
• accepts or delivers a stream of characters without block 

structure
• not addressable, not seekable
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5.b  Principles of I/O Hardware
The diversity of I/O devices

I/O devices vary in many dimensions (cont’d)
sequential vs. random-access

sequential devices transfer in a fixed order they determine
random-access devices can be “seeked” at any storage 
location

synchronous vs. asynchronous
synchronous devices have predictable transfer times
asynchronous devices are irregular
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5.b  Principles of I/O Hardware
The diversity of I/O devices

I/O devices vary in many dimensions (cont’d 2)
sharable vs. dedicated

sharable devices may be used concurrently by several 
processes or threads
dedicated devices cannot

speed of operation
devices speed range from a few bytes to a few GB per 
second

read-write, read only, or write only
some devices are both input/output, others only one-way



Characteristics of I/O devices

5.b  Principles of I/O Hardware
The diversity of I/O devices

I/O devices vary in many dimensions

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition). 
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Typical I/O device data rates

I/O devices vary hugely in data transfer speed

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

5.b  Principles of I/O Hardware
The diversity of I/O devices
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5.b  Principles of I/O Hardware
The diversity of I/O devices

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 

Some typical device, network, and bus data rates



CPU, memory and I/O devices communicate via buses
a system bus is the “public transportation” of memory and I/O 
communication = a set of wires + a message protocol
typically contains hundreds of data, address and control lines
each line carries only 1 bit at a time, therefore the bus width 
and frequency are key factors in performance

Bus interconnection scheme

5.b  Principles of I/O Hardware
I/O bus architecture

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).

4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 17



4/11/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 18

5.b  Principles of I/O Hardware
I/O bus architecture

Typical bus structure
data lines

provide a path for moving data between system modules
address lines

used to designate the source or destination of the data
control lines

transmit commands and timing information between modules
memory read/write, I/O read/write, bus request/grant, etc.



Typical bus interconnection layout 
computer systems contain multiple types of buses at different 
levels of the hierarchy
memory bus, SCSI, ISA, PCI, USB, FireWire, etc.

5.b  Principles of I/O Hardware
I/O bus architecture

Tanenbaum, A. S. (2006)
Structured Computer Organization (5th Edition). 
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5.b  Principles of I/O Hardware
I/O bus architecture

Basic hardware I/O communication architecture
each I/O device consists of two parts:

the controller or module, containing most of the electronics
the device proper, such as a disk drive

the job of the controller is (a) to control the I/O and (b) handle 
bus access for it

CPU, 
Memory,

bus bridge 

I/O controller 
or “module”

I/O device or 
“peripheral”

bus
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5.b  Principles of I/O Hardware
I/O devices & modules

Why I/O modules? Why not connecting the devices 
directly to the bus?

wide variety of peripherals with various operation methods: 
don’t want to incorporate heterogeneous logic into CPU
modules offer a more unified hardware command interface
data transfer rate slower or faster than memory or CPU
different data and word lengths
multiplexing: one module serving several devices (ex: SCSI)

Functions of an I/O module
interface to CPU and memory via system bus
interface to one or more peripherals by custom data links



Two main categories of I/O module-device interface

5.b  Principles of I/O Hardware
I/O devices & modules

Parallel and serial I/O

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).
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Schematic structure of an I/O device
interface to the I/O module: control, data and status signals
interface with the physical/electrical apparatus

5.b  Principles of I/O Hardware
I/O devices & modules

Block diagram of an I/O device

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).
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5.b  Principles of I/O Hardware
I/O devices & modules

Typical I/O interface with the the I/O module (“host”)
control registers

can be written by the host to start a command or change 
the mode of the device

status registers
contain bits read by the host that indicate whether a 
command has completed, a byte is available to be read 
from the data-in register, or there has been a device error

data registers (buffer)
data-in registers are read by the host to get input 
data-out registers are written by the host to send output 
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5.b  Principles of I/O Hardware
I/O devices & modules

I/O interface with the physical/electrical apparatus
transducer

converts between binary data and analog electro-
mechanical events specific to the device
ex: pressing a key on the keyboard generates an 
electronic signal and transduced into the ASCII bit pattern
ex: in a disk, bits in the device’s buffer are transduced 
from/to magnetic patterns on the moving disk



I/O controllers or “modules”
intermediate between the I/O device (peripheral) and CPU or 
memory

Generic model of an I/O module

5.b  Principles of I/O Hardware
I/O devices & modules

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).
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Schematic structure of an I/O module
interface also based on control, status and data lines
basically an adapter/multiplexer with a buffer (data registers)

5.b  Principles of I/O Hardware
I/O devices & modules

Block diagram of an I/O module Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).
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5.b  Principles of I/O Hardware
CPU-I/O communication

Three communication protocols between CPU and I/O
1. Programmed I/O (or “polling” or “busy waiting”)

the CPU must repeatedly poll the device to check if the I/O 
request completed

2. Interrupt-driven I/O
the CPU can switch to other tasks and is (frequently) 
interrupted by the I/O device

3. Direct Memory Access (DMA)
the CPU is involved only at the start and the end of the 
whole transfer; it delegates control to the I/O controller that 
accesses memory directly without bothering the CPU



1. Programmed I/O
the CPU issues an I/O command 
(on behalf of a process) to an I/O 
module
the CPU (the process) then busy 
waits for completion before 
proceeding
also called “busy waiting” or 
“polling”

5.b  Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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5.b  Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).
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5.b  Principles of I/O Hardware
CPU-I/O communication

1. Programmed I/O
basic handshake protocol between CPU and I/O module
a. host repeatedly polls occupied bit in status register of I/O 

module until cleared (this is the busy waiting part)
b. host sets write bit in command register of I/O module and 

writes byte into data-out register of I/O module
c. host sets command-ready bit of I/O module
d. I/O module notices command-ready bit and sets occupied bit
e. I/O module reads command and data-out registers and 

orders I/O device to perform I/O
f. when suceeded, I/O module clears command-ready bit, error

bit and occupied bit



5.b  Principles of I/O Hardware
CPU-I/O communication

Example: writing a string to the printer

Steps in printing a string

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.b  Principles of I/O Hardware
CPU-I/O communication

Example of “driver” logic: writing a string to the printer
1. . . . using programmed I/O:

Programmed I/O code

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.b  Principles of I/O Hardware
CPU-I/O communication

1. Programmed I/O problems
the I/O device (module) is passive and needy: it does not alert 
the CPU that it is ready and does not transfer data to/from 
memory by itself
the CPU needs to continually check the I/O status and data 
registers

to minimize the CPU waiting time
but also to avoid overflow in the small buffer of the 
controller: needs to be regularly cleared

naturally this is a waste of CPU time if the I/O transfer is slower 
than the CPU. . . which it always is!
no longer an option today
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5.b  Principles of I/O Hardware
CPU-I/O communication

2. Interrupt-driven I/O
the CPU issues an I/O command (on 
behalf of a process) to an I/O module
. . . but does not wait for completion; 
instead, it continues executing 
subsequent instructions
then, later, it is interrupted by the I/O 
module when work is complete
note: the subsequent instructions 
may be in the same process or not, 
depending on whether I/O was 
requested asynchronously or not: 
process wait ≠ CPU wait! Stallings, W. (2004) Operating Systems:

Internals and Design Principles (5th Edition). 
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5.b  Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).
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5.b  Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

2. Interrupt-driven I/O
CPU senses interrupts 
in a third stage of the 
fetch/execute cycle
control (PC) transfers to 
an interrupt handler in 
kernel space,
which branches to O/S 
routines specific to the 
type of interrupt;
the CPU is eventually 
returned to this user 
program . . . or another



5.b  Principles of I/O Hardware
CPU-I/O communication

Example of “driver” and “interrupt handler” logic: 
writing a string to the printer
2. . . . using interrupts:

only
1st char

Interrupt-driven I/O code: (a) system call and (b) interrupt service procedure

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.b  Principles of I/O Hardware
CPU-I/O communication

2. Interrupt-driven I/O
relies on an efficient hardware mechanism that saves a small 
amount of CPU state, then calls a privileged kernel routine
note that this hardware mechanism is put to good use by the 
O/S for other events:

in virtual memory paging, a page fault is an exception that 
raises an interrupt
system calls execute a special instruction (TRAP), which is 
a software interrupt
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5.b  Principles of I/O Hardware
CPU-I/O communication

2. Interrupt-driven I/O problems
the I/O device (module) is more active but still very needy
wasteful to use an expensive general-purpose CPU to feed  a 
controller 1 byte at a time
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5.b  Principles of I/O Hardware
CPU-I/O communication

3. Direct Memory Access (DMA)
avoids programmed/interrupted I/O for large data movement 
requires a special-purpose processor called DMA 
controllerbypasses CPU to transfer data directly between I/O 
device and memory
the handshaking is performed between the DMA controller and 
the I/O module: in essence, the DMA controller is going to do 
the programmed I/O instead of the CPU
only when the entire transfer is finished does the DMA 
controller interrupt the CPU 
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5.b  Principles of I/O Hardware
CPU-I/O communication

Stallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).



3. Direct Memory Access (DMA)

5.b  Principles of I/O Hardware
CPU-I/O communication

Steps in a DMA transfer

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition). 
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5.b  Principles of I/O Hardware
CPU-I/O communication

Example of “driver” logic: writing a string to the printer
3. . . . using DMA:

DMA-supported I/O code: (a) system call and (b) interrupt service procedure

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.b  Principles of I/O Hardware
CPU-I/O communication

Summary

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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5.c  I/O Software Layers
Overview of the I/O software

Goals and services of the I/O software
device independence

write programs that can access I/O devices without 
specifying them or knowing them in advance
ex: reading a file from a disk, whether floppy, magnetic, 
CD-ROM, etc.
no need to modify the program if a new device comes in

uniform naming (“mounting”)
abstract naming space independent from physical device
naming should be a string and/or integer ID, again without 
device awareness
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5.c  I/O Software Layers
Overview of the I/O software

Goals and services of the I/O software
error handling

lower layers try to handle the error before upper levels
controller hardware should correct error first; if it cannot, then 
driver software (for ex. by reissuing the command), etc.
upper levels can remain unaware of “bumps” at lower levels

synchronous vs. asynchronous transfers
most physical I/O is asynchronous (interrupt-driven)
O/S should make it look synchronous (blocking) to processes

buffering
decouple transfer rates and insulate data from swapping



The I/O component of the O/S is organized in layers
1. interrupt handlers
2. device drivers
3. device-independent I/O
4. user-level I/O system calls

Typical layers of the I/O software subsystem

4.
3.
2.
1.

5.c  I/O Software Layers
Overview of the I/O software

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.c  I/O Software Layers
Overview of the I/O software

any complex software 
engineering problem
layers can be modified 
independently without 
affecting layers above 
and below

Abstraction, encapsulation and layering

uses
services

N

N–1

N+1
offers
services

design of a generic interface



Typical flow of control through the I/O layers upon an 
I/O request

5.c  I/O Software Layers
Overview of the I/O software

(a) sys call     (b) interrupt service

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.c  I/O Software Layers
Interrupt handlers

1. Interrupt handler routines
interrupts (asynchronous, external to process) basically use 
the same mechanism as exceptions and traps (synchronous, 
internal to process)
when an interrupts happen, the CPU saves a small amount of 
state and jumps to an interrupt-handler routine at a fixed 
address in memory
the interrupt routine’s location is determined by an interrupt 
vector



5.c  I/O Software Layers
Interrupt handlers

1. Interrupt handler routines (cont’d)

Intel Pentium processor event-vector table

nonmaskable, 
used for various 
error conditions

maskable, used for 
device-generated 

interrupts
Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition). 
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5.c  I/O Software Layers
Interrupt handlers

1. Interrupt handler routines
typical steps followed by an interrupt routine:
a. save any registers not saved by the interrupt hardware
b. set up a context (TLB, MMU, page table) for the routine
c. set up a stack for the routine
d. acknowledge the interrupt controller
e. extract information from the I/O device controller’s registers
f. etc.

interrupt processing is a complex operation that takes a great 
number of CPU cycles, especially with virtual memory
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5.c  I/O Software Layers
Interrupt handlers

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

Simple interrupt processing
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5.c  I/O Software Layers
Device drivers

2. Device drivers
each I/O device needs a device-specific code to control it
device manufacturers supply drivers for several popular O/S
a driver handles one type of device or one class (ex: SCSI)
the driver logic is generally executed in kernel space (although
microkernel architectures might push it in user space)
drivers should “snap into place” in the kernel through device-
independent interfaces (see next section)
two main categories of drivers (two higher-level interfaces)

block-device drivers: disks, etc.
character-device drivers: keyboards, printers, etc.
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5.c  I/O Software Layers
Device drivers

2. Device drivers (cont’d)
a driver has several functions

accept abstract read/write requests from the device-
independent software above and translate them into 
concrete I/O-module-specific commands
schedule requests: optimize queued request order for best 
device utilization (ex: disk arm)
initialize the device, if needed
manage power requirements
log device events



4/18/2006 CS 446/646 - Principles of Operating Systems - 5. Input/Output 59

5.c  I/O Software Layers
Device drivers

2. Device drivers (cont’d)
typical code organization of a device driver:
a. check validity of input parameters coming from above
b. if valid, translate to concrete commands, e.g., convert 

block number to head, track & sector in a disk’s geometry
c. check if device currently in use; if yes, queue request; if 

not, possibly switch device on, warm up, initialize, etc.
d. issue appropriate sequence of commands to controller
e. if needs to wait, block
f. upon interrupted from blocking, check for errors and pass 

data back
g. process next queued request



2. Device drivers (cont’d)
a driver code must be reentrant to allow for nested interrupts
a driver must expect to be called a 2nd time before the 1st call
is finished

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

5.c  I/O Software Layers
Device drivers

Nested interrupt processing
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5.c  I/O Software Layers
Device-independent I/O software

3. Device-independent I/O software
generic functions provided by the kernel I/O subsystem:

uniform interfacing for device drivers
buffering
error reporting
providing a device-independent block size



3. Device-independent I/O software (cont’d)
uniform interfacing

make all I/O devices look more or less the same, so that 
the O/S doesn’t need to be hacked every time a new 
device comes along

5.c  I/O Software Layers
Device-independent I/O software

(a) Without and (b) with a standard driver interface
Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.c  I/O Software Layers
Device-independent I/O software

3. Device-independent I/O software (cont’d)
uniform interfacing

therefore, generally one unified interface
possibly additional specialized extensions for the main 
device categories

• block devices: read(), write()

• random-access block devices: seek()

• character-stream devices: get(), put()

• network devices: network socket interface similar to 
file system
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5.c  I/O Software Layers
Device-independent I/O software

3. Device-independent I/O software (cont’d)
buffering = “decoupling”

memory area that stores data in kernel space while 
transferred between device and application
cope with a speed mismatch between producer and 
consumer (ex: modem thousand times slower than disk)
adapt between services with different data-transfer sizes 
(ex: fragmentation and reassembly of network packets)
“copy semantics”: cache data while transferred so it is not 
affected by changes from application or swapping
read ahead (locality principle)



3. Device-independent I/O software (cont’d)
buffering
a) unbuffered input
b) buffering in user space
c) buffering in kernel, copy to user space
d) double-buffering in kernel

5.c  I/O Software Layers
Device-independent I/O software

→ context switch for each transferred byte
→ what happens if paged out?

→ what if buffer full?

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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3. Device-independent I/O software (cont’d)
buffering

double buffering: further decouples producer from consumer 
(ex: modem fills 2nd buffer while 1st buffer is written to disk)
circular buffering: extension suitable for rapid bursts of I/O

5.c  I/O Software Layers
Device-independent I/O software

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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3. Device-independent I/O software (cont’d)
buffering in networking

5.c  I/O Software Layers
Device-independent I/O software

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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4. User-level I/O system calls
utility library procedures wrapping system calls; for example, 
formatting: printf(), scanf()
spooling: a daemon centralizes access requests to printer and 
other devices

5.c  I/O Software Layers
User-level I/O system calls

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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5.c  I/O Software Layers
User-level I/O system calls

The life-cycle of an I/O request

buffered?

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition). 
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Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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The memory hierarchy

The memory hierarchy

5.d  Disk Management
Physical disk characteristics
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5.d  Disk Management
Physical disk characteristics

Rigid (“hard”) magnetic disks
remain today the most important secondary memory (although 
the gap between CPU and disk performance has increased)
diameter shrunk from 50 cm down to 12 or 3 cm (notebooks)
“Winchester” disks are sealed
components of a disk drive:

one or several aluminum platters stacked vertically
platters have magnetizable coating on both sides
one pair of read/write movable heads per platter surface 
(heads hover on air cushion, don’t make contact)
all heads mechanically fixed so they move together and 
are all at same distance from center
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5.d  Disk Management
Physical disk characteristics

Components of a disk drive

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 



In modern systems, read and write heads are separate
the write head is an induction coil: produces a magnetic field
the read head is a magnetoresistive (MR) sensor: resistance 
depends on magnetic field, thus generates variable voltage

5.d  Disk Management
Physical disk characteristics

Write/read headsStallings, W. (2006) Computer Organization &
Architecture: Designing for Performance (7th Edition).
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5.d  Disk Management
Disk formatting

Data organization and formatting
after manufacturing, there is no information on the disk: just a
blank slate (continuous surface of magnetizable metal oxide)
before a disk can be used, each platter must receive a low-
level format (“physical format”) done by code in I/O controller:

series of concentric tracks (not grooves)
each tracks contains sectors, separated by short gaps

then the disk may be partitioned
finally, each partition receives a high-level format (“logical”):

boot sector, free storage map, file allocation table, etc.
→ we’ll see more of this in the File System chapter



A disk is addressed as a 1-D array of logical blocks
translation between logical block # and track # + sector #

Disk data layout

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

5.d  Disk Management
Disk formatting
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Vertically aligned tracks on multiple platters are called 
“cylinders”

Tracks and cylinders

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

5.d  Disk Management
Disk formatting
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Disk layout methods
constant angular velocity: pie-shaped sectors, same number 
per track → simple but wasted space on the long outer tracks
multiple zone recording: fixed-length sectors, variable number 
per track → greater data density but more complicated access

Comparison of disk layout methods

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

5.d  Disk Management
Disk formatting
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Virtual disk geometry
most disks are physically MZR but may still present a simpler, 
virtual CAV geometry to the O/S
the O/S driver uses cylinder, track, sector coordinates (x, y, z) 
which are remapped into zones by the I/O controller 

Physical geometry vs. virtual geometry

5.d  Disk Management
Disk formatting

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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Tracks are divided into fixed-length sectors
each sector typically contains

512 bytes of data
preceded by a preamble (for head synchronization)
followed by an error-correcting code (ECC)

A portion of a disk track showing two sectors

Tanenbaum, A. S. (2006)
Structured Computer Organization (5th Edition). 

5.d  Disk Management
Disk formatting
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Disk performance parameters
seek time: time it takes to position the head at the track
rotational delay: time it takes for the beginning of the sector to 
reach the head
access time = seek time + rotational delay
transfer time: time required for sector data transfer

5.d  Disk Management
Disk scheduling

Timing of a disk I/O transfer

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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Disk performance parameters
average seek time typically < 10 ms (thanks to small diameter)
rotational speed r ≈ 7,500 rpm = 1r / 8 ms → 4 ms rot. delay
transfer time T = b / rN with b / N = transferred bytes / track

5.d  Disk Management
Disk scheduling

Two opposites on the historical scale of disk parameters Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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Various I/O device queues

Additional waiting time for device availability
processes blocked for I/O are put into device-specific queues

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition). 

5.d  Disk Management
Disk scheduling

disk queue
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5.d  Disk Management
Disk scheduling

Why disk scheduling matters: a timing comparison
total average service time

Tservice = Tseek +  Trotational +  Ttransfer

= Tseek +  1 / 2r  +  b / rN
assume Tseek = 4 ms, r = 7,500 rpm, 500 sectors per track ×
512 bytes per sector → Ttransfer =

Tservice = 2,500 × (4 ms + 4 ms + 0.016 ms) = 20 seconds
first case: reading 2,500 contiguous sectors (in 5 tracks)

0.016 ms / sector
first case: reading 2,500 randomly scattered sectors

Tservice = 4 ms + 5 × 4 ms + 2,500 × 0.016 ms = 64 ms
→ the order of sector access requests can make a big difference!
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5.d  Disk Management
Disk scheduling

Overview of disk scheduling policies 
kernel-level scheduling: based on requestor process

control of scheduling outside of disk management software
not intended to optimize disk utilization
main objective is process priorities defined by the O/S
or following a blind, generic policy such as FIFO (no 
starvation) or LIFO (locality)

driver-level scheduling: based on requested item
goal is to optimize disk utilization
the disk-specific software has expertise on how requests 
should be ordered



Overview of disk scheduling policies 
kernel-level (process) vs. driver-level (request) scheduling 

5.d  Disk Management
Disk scheduling

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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5.d  Disk Management
Disk scheduling

Comparing performance of scheduling policies 
assume disk with 200 tracks
assume sequence of requested tracks in order received by 
disk scheduler: 55, 58, 39, 18, 90, 160, 150, 38, 184
assume disk head initially located at track #100
we will compare FIFO, SSTF, SCAN, C-SCAN
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5.d  Disk Management
Disk scheduling

First-In-First-Out (FIFO)
requests are processed in arrival order
fair and no risk of starvation
ok if few processes and requests cluster file sectors (locality)
generally bad, though, as interleaving causes random seek 
jumps and waste of time Stallings, W. (2004) Operating Systems:

Internals and Design Principles (5th Edition). 



Shortest Service (Seek) Time First (SSTF)
select the request that requires the least arm movement, i.e., 
the shortest seek time
much better than random or FIFO, however greater risk of 
starvation: requests in remote disk area may remain unfulfilled 
as long as there are shorter ones

5.d  Disk Management
Disk scheduling

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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5.d  Disk Management
Disk scheduling

Scan or “elevator” algorithm (SCAN)
to prevent starvation, the arm moves in one direction only and 
satisfies requests “en route”
arm direction is reversed when reaching the last track 
(innermost or outermost)
. . . or as soon as reaching last request (LOOK:
the variant implemented in Linux)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 



Circular scan (C-SCAN)
same as SCAN except the arm direction of movement is never 
reversed
this reduces the maximum delay experienced by new requests 
that arrived at the opposite end of the disk

5.d  Disk Management
Disk scheduling

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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