## **Principles of Operating Systems**

CS 446/646

#### 4. CPU Scheduling

a. Concepts of Scheduling

#### b. Scheduling Algorithms

- ✓ Scheduling in batch systems
- ✓ Scheduling in interactive systems
- c. Queuing Analysis
- d. Thread Scheduling

#### Scheduling in batch systems

## Scheduling metrics

- ✓ arrival time  $t_a$  = time the process became "Ready" (again)
- ✓ wait time  $T_{W}$  = time spent waiting for the CPU
- ✓ service time  $T_s$  = time spent executing in the CPU
- ✓ <u>turnaround time</u>  $T_r$  = total time spent waiting and executing



#### Scheduling in batch systems

## First-Come-First-Served (FCFS)

- ✓ processes are assigned the CPU in the order they request it.
- ✓ when the running process blocks, the first "Ready" is run next.
- ✓ when a process gets "Ready", it is put at the end of the queue



FCFS scheduling policy

#### Scheduling in batch systems

- First-Come-First-Served (FCFS)
  - ✓ nonpreemptive, oldest and simplest to program
  - ✓ apparently "fair" but very inefficient; example:
    - a CPU-bound process runs 1 sec, then reads 1 disk block
    - several I/O-bound processes run little CPU, but must read 1000 disk blocks



> proompt the CDLL hound more often to let the I/O hound progress

Scheduling in batch systems



by preempting the CPU-bound every 10ms (100 Hz), each I/O-bound now takes only 10 seconds (without bothering the CPU-bound too much ~10s)

→ see preemptive algorithms (Round-Robin, etc.) in later sections

#### Scheduling in batch systems

- Shortest Job First (SJF)
  - ✓ nonpreemptive, assumes the run times are known in advance
  - ✓ among several equally important "Ready" jobs (or CPU bursts),
    the scheduler picks the one that will finish the earliest



SJF scheduling policy

#### Scheduling in batch systems

- Shortest Job First (SJF)
  - ✓ example:





- a) turnaround times  $T_r = 8$ , 12, 16, 20  $\rightarrow$  mean  $T_r = 14$
- b) turnaround times  $T_r = 4, 8, 12, 20 \rightarrow \text{mean } T_r = 11$
- ✓ SJF is optimal among jobs available immediately; proof:
  - generally, with service times  $T_s = a$ , b, c, d the mean turnaround time is:  $T_r = (4a + 3b + 2c + d) / 4$ , therefore it is always better to schedule the longest process (d) last
- ✓ however, being non-preemptive, SJF does not deal well with
  jobs arriving subsequently (ex: 2,4,1,1,1 arriving at 0,0,3,3,3)

#### Scheduling in batch systems

# Shortest Remaining Time (SRT)

- ✓ preemptive version of SJF, also assumes known run time
- ✓ choose the process whose <u>remaining</u> run time is shortest
- ✓ allows new short jobs to get good service



SRT scheduling policy

#### Scheduling in interactive systems

## Round-Robin (RR)

 $\checkmark$  preemptive FCFS, based on a timeout interval, the **quantum** q

✓ the running process is interrupted by the clock and put last in a FIFO "Ready" queue; then, the first "Ready" process is run



RR (q = 1) scheduling policy

#### Scheduling in interactive systems

- Round-Robin (RR)
  - $\checkmark$  a crucial parameter is the quantum q (generally ~10–100ms)
    - q should be big compared to context switch latency (~10 $\mu$ s)
    - q should be less than the longest CPU bursts, otherwise RR degenerates to FCFS  $\rightarrow$  typically at 80% of the distrib. tail



RR (q = 4) scheduling policy

#### Scheduling in interactive systems

- Shortest Process Next (SPN)
  - ✓ same as SJF: pick the one that should finish the earliest
  - → difference in the interactive system: the prediction about future duration is not known but estimated from past durations



SPN scheduling policy

#### Scheduling in interactive systems

- Estimation of processing time from past
  - ✓ predicted service time = simple averaging of past run times

$$S(n+1) = (1/n) \sum T(i)$$

$$\Leftrightarrow S(n+1) = T(n)/n + (1-1/n) S(n)$$

✓ exponential averaging, also called "aging"

• 
$$S(n+1) = \alpha T(n) + (1-\alpha) S(n), 0 < \alpha \le 1$$

- high  $\alpha$  forgets past runs quickly
- low  $\alpha$  remembers past runs for a long time

#### Scheduling in interactive systems

- Estimation of processing time from past
  - ✓ "aging" tracks changes in process behavior faster than the mean



Example of exponential averaging in duration estimation

#### Scheduling in interactive systems

- Highest Response Ratio Next (HRRN)
  - $\checkmark$  minimize the normalized turnaround time  $T_r/T_s$
  - → compromise between FCFS, which favors long processes, and SPN, which favors short processes



HRRN scheduling policy

#### Scheduling in interactive systems

- Priority Scheduling
  - ✓ several "Ready" process queues, with different priorities



**Priority queuing** 

#### Scheduling in interactive systems

## Priority Scheduling

 processes are assigned to queues based on their properties (memory size, priority, bound type, etc.)



#### Scheduling in interactive systems

- Priority Scheduling with Feedback (FB)
  - ✓ processes can be moved among queues
  - $\checkmark$  each queue has its own policy, generally RR with variable q(Q)



Stallings, W. (2004) *Operating Systems: Internals and Design Principles (5th Edition)* 

**Priority queuing** 

#### Scheduling in interactive systems

- Priority Scheduling with Feedback (FB)
  - ✓ each time a process is preempted, it is demoted to a lower-level queue
  - ✓ tends to leave I/O-bound in higher priority queues, as desired



FB (q = 1) scheduling policy

#### Scheduling in interactive systems

- Priority Scheduling with Feedback (FB)
  - ✓ a uniform RR quantum for all queues might create starvation
  - ✓ to compensate for increasing wait times in lower queue, increase q, too; for example  $q = 2^i$



FB (q = 2) scheduling policy

# Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition

## 4.b Scheduling Algorithms

#### Scheduling in interactive systems

|              | Process                 | A    | В    | С    | D    | Е    |       |
|--------------|-------------------------|------|------|------|------|------|-------|
|              | Arrival Time            | 0    | 2    | 4    | 6    | 8    |       |
|              | Service Time $(T_s)$    | 3    | 6    | 4    | 5    | 2    | Mean  |
| FCFS         | Finish Time             | 3    | 9    | 13   | 18   | 20   |       |
|              | Turnaround Time $(T_r)$ | 3    | 7    | 9    | 12   | 12   | 8.60  |
|              | $T_r/T_s$               | 1.00 | 1.17 | 2.25 | 2.40 | 6.00 | 2.56  |
| RR q = 1     | Finish Time             | 4    | 18   | 17   | 20   | 15   |       |
|              | Turnaround Time $(T_r)$ | 4    | 16   | 13   | 14   | 7    | 10.80 |
|              | $T_r/T_s$               | 1.33 | 2.67 | 3.25 | 2.80 | 3.50 | 2.71  |
| RR q = 4     | Finish Time             | 3    | 17   | 11   | 20   | 19   |       |
|              | Turnaround Time $(T_r)$ | 3    | 15   | 7    | 14   | 11   | 10.00 |
|              | $T_r/T_s$               | 1.00 | 2.5  | 1.75 | 2.80 | 5.50 | 2.71  |
| SPN          | Finish Time             | 3    | 9    | 15   | 20   | 11   |       |
|              | Turnaround Time $(T_r)$ | 3    | 7    | 11   | 14   | 3    | 7.60  |
|              | $T_r/T_s$               | 1.00 | 1.17 | 2.75 | 2.80 | 1.50 | 1.84  |
| SRT          | Finish Time             | 3    | 15   | 8    | 20   | 10   |       |
|              | Turnaround Time $(T_r)$ | 3    | 13   | 4    | 14   | 2    | 7.20  |
|              | $T_r/T_s$               | 1.00 | 2.17 | 1.00 | 2.80 | 1.00 | 1.59  |
| HRRN         | Finish Time             | 3    | 9    | 13   | 20   | 15   |       |
|              | Turnaround Time $(T_r)$ | 3    | 7    | 9    | 14   | 7    | 8.00  |
|              | $T_r/T_s$               | 1.00 | 1.17 | 2.25 | 2.80 | 3.5  | 2.14  |
| FB q = 1     | Finish Time             | 4    | 20   | 16   | 19   | 11   |       |
|              | Turnaround Time $(T_r)$ | 4    | 18   | 12   | 13   | 3    | 10.00 |
|              | $T_r/T_s$               | 1.33 | 3.00 | 3.00 | 2.60 | 1.5  | 2.29  |
| FB $q = 2^i$ | Finish Time             | 4    | 17   | 18   | 20   | 14   |       |
|              | Turnaround Time $(T_r)$ | 4    | 15   | 14   | 14   | 6    | 10.60 |
|              | $T_r/T_s$               | 1.33 | 2.50 | 3.50 | 2.80 | 3.00 | 2.63  |

#### Scheduling in interactive systems

# Traditional UNIX scheduling

- ✓ multilevel feedback using RR within each of the priority queues
- ✓ typically 1-second preemption timeout
- ✓ system of integer priorities recomputed once per second
- ✓ a base priority divides processes into fixed bands of priority levels; in decreasing order:
  - swapper
  - block I/O device control
  - file manipulation
  - character I/O device control
  - user processes

## **Principles of Operating Systems**

CS 446/646

#### 4. CPU Scheduling

a. Concepts of Scheduling

#### b. Scheduling Algorithms

- ✓ Scheduling in batch systems
- ✓ Scheduling in interactive systems
- c. Queuing Analysis
- d. Thread Scheduling