

Principles of Operating Systems CS 446/646

4. CPU Scheduling

René Doursat

Department of Computer Science & Engineering
University of Nevada, Reno
Spring 2006

CS 446/646

- 0. Course Presentation
- 1. Introduction to Operating Systems
- 2. Processes
- 3. Memory Management
- 4. CPU Scheduling
- 5. Input/Output
- 6. File System
- 7. Case Studies

CS 446/646

4. CPU Scheduling

- a. Concepts of Scheduling
- b. Scheduling Algorithms
- c. Queuing Analysis
- d. Thread Scheduling

CS 446/646

4. CPU Scheduling

- a. Concepts of Scheduling
 - ✓ Three-level scheduling
 - ✓ Purpose of CPU scheduling
- b. Scheduling Algorithms
- c. Queuing Analysis
- d. Thread Scheduling

Three-level scheduling

- Long-term scheduling (mostly in batch)
 - the decision to add a program to the pool of processes to be executed: controls the degree of multiprogramming
- Medium-term scheduling
 - ✓ the decision to add to the number of processes that are partially or fully in main memory ("swapping")
 - ✓ not the same as paging: swapping out means removing. all the pages of a process
- Short-term scheduling = CPU scheduling
 - the decision as to which available processes in memory are to be executed by the processor ("dispatching")

Three-level scheduling

Three-level scheduling

Three-level scheduling

Three-level scheduling

> Reminder: process states

Three-level scheduling

- ➤ In the O/S, the CPU scheduler decides which "Ready" process to run next (and which "Running" to time out)
 - ✓ the discipline it follows is the scheduling algorithm

Three-level scheduling

- General queuing system for scheduling
 - ✓ in most algorithms, queues are not strictly FIFO: rather "pools"

Queuing diagram for scheduling

Purpose of CPU scheduling

- Why scheduling matters: user service response
 - ✓ example: choosing between
 - a process that updates the screen after the user has closed a window
 - a process that sends out queued email
 - ✓ taking 2 seconds to close the window while sending the email would be unacceptable
 - ✓ on the other hand, delaying the email while closing the window would hardly be noticed
 - → schedule wisely to match user's expectations

- Why scheduling matters: CPU usage
 - ✓ switching processes (contexts) is heavy
 - switch from user mode to kernel mode
 - CPU state must be saved
 - process state must be saved
 - pages and page bits must be saved
 - MMU must be reloaded with new page table
 - etc.
 - → to maximize CPU utilization, interleave but at the same time minimize process switches

Purpose of CPU scheduling

- > Types of process behavior: CPU-I/O burst cycle
 - ✓ processes alternate CPU usage with I/O wait
 - compute-bound processes have <u>long CPU bursts</u> and infrequent I/O
 - I/O-bound processes have short CPU bursts and frequent I/O

(a) Compute-bound process vs. (b) I/O-bound process

Purpose of CPU scheduling

> Types of process behavior: CPU-I/O burst cycle

power-law: large # of short CPU bursts, small # of large bursts

I/O-bound processes

- ✓ as CPU speeds increase, processes generally tend to become more and more I/O-bound
- ✓ the scheduling of I/O-bound processes will likely become an important subject in the future
- → basic idea: an I/O-bound process that is "Ready" to run should get the CPU quickly so it can keep the disk busy

When scheduling decisions must be made

- ✓ when a new process is created run the child or the parent?
- ✓ when a process exits who's next?
- ✓ when an I/O interrupt occurs upon finishing an I/O task —
 should the waiting process be rescheduled? or let the currently
 running process continue? or pick another process? etc.
- ✓ when a timeout (clock interrupt) occurs who's next?

- > Two kinds of CPU-scheduling algorithms
 - ✓ cooperative scheduling let a process run until it blocks on I/O, terminates or voluntarily releases the CPU (system call)

✓ preemptive scheduling — follow clock interrupts (ex: 50Hz) to forcibly switch processes (demote the "Running" to "Ready")

- > Scheduling algorithm goals all systems (batch & int.)
 - ✓ fairness comparable processes get comparable service
 - ✓ compliance to system's policy ex: high-priority override low-priority processes (ex: safety control vs. payroll in a nuclear plant)
 - ✓ keep system busy CPU and I/O devices should be utilized fully
 - if all CPU-bound were run first: fight for CPU, I/O idle
 - then all I/O-bound were run: fight for I/O, CPU idle
 - → keep a well-balanced mix of CPU-bound and I/O-bound processes, so they can fill in for each other

- Scheduling algorithm goals batch systems
 - ✓ throughput maximize # of completed jobs per time unit
 - ✓ turnaround time (latency) minimize time between submission and termination of job
 - high throughput and low turnaround are rarely compatible
 - for ex: supply of short jobs scheduled in front of long jobs: good throughput, bad turnaround time for long jobs

18

- Scheduling algorithm goals interactive systems
 - ✓ response time respond to requests quickly: minimize time between issuing command and getting result
 - ex: a user request to start a new program should take precedence over background work
 - having interactive requests go first will be perceived as good service
 - ✓ proportionality time meet users' expectation, even if irrational
 - ex: 45 seconds to establish a modem connection is perceived as acceptable, yet 45 seconds to hang up is not
 - whenever possible, take this into account when scheduling

Purpose of CPU scheduling

Scheduling algorithm goals — summary

All systems

Fairness - giving each process a fair share of the CPU Policy enforcement - seeing that stated policy is carried out Balance - keeping all parts of the system busy

Batch systems

Throughput - maximize jobs per hour Turnaround time - minimize time between submission and termination CPU utilization - keep the CPU busy all the time

Interactive systems

Response time - respond to requests quickly Proportionality - meet users' expectations

Tanenbaum, A. S. (2001)

Modern Operating Systems (2nd Edition)

Real-time systems

Meeting deadlines - avoid losing data Predictability - avoid quality degradation in multimedia systems

Some goals of CPU scheduling under different circumstances

CS 446/646

4. CPU Scheduling

- a. Concepts of Scheduling
 - ✓ Three-level scheduling
 - ✓ Purpose of CPU scheduling
- b. Scheduling Algorithms
- c. Queuing Analysis
- d. Thread Scheduling