O/S Design Decisions

~etch Policy = what page & when
Placement Policy = in what frame
Replacement Policy = out of what frame

Resident Set Management = how many
frames per process

Cleaning Policy = when to write out to
disk

LLoad control = how many processes
(CPU scheduling)

O/S Design Decisions

Fetch Policy
Demand
Prepaging

Placement Policy

Replacement Policy
Basic Algorithms
Optimal
Least recently used (LELT)
First-in-first-out (FIFO)
Clock
Page buffering

Resident Set Management
Resident set size
Fixed
Variable
Replacement Scope
(Global
Local

Cleaning Policy
Demand
Precleaning

Load Control

Degr&e of 111111T.igngrammin§

Fetch Policy

Fetch Policy

Determines when a page should be brought
Into memory

Demand paging only brings pages into main
memory when a reference Is made to a
location on the page

Many page faults when process first started

Prepaging brings in more pages than needed

More efficient to bring in pages that reside
contiguously on the disk

Placement Policy

Determines where In real memory a
process piece Is to reside

Important in a segmentation system
Paging or combined paging with
segmentation hardware performs address
translation

Replacement Policy

Placement Policy
Which page is replaced?

Page removed should be the page least
likely to be referenced in the near future

Most policies predict the future behavior on
the basis of past behavior

Replacement Policy

Frame Locking
If frame Is locked, it may not be replaced

Kernel of the operating system: the page
handler itself!

Control structures

/O buffers
Assoclate a lock bit with each frame

Basic Replacement

Algorithms
Optimal policy (OPT)
Least Recently Used (LRU)
First-In-First-Out (FIFO)
Clock

Basic Replacement

Algorithms

Optimal policy
Selects for replacement that page for which
the time to the next reference is the longest

Impossible to have perfect knowledge of
future events

Page address

stream 2 3 2 1 5 2 4 5 3 2
2 2 2 2 g 2 4 4 4 g 2
OPT 3 3 3 3 3 3 3 3 3 3
1 3 5 3 3

F F

Basic Replacement

Algorithms

Least Recently Used (LRU)

Replaces the page that has not been
referenced for the longest time

By the principle of locality, this should be
the page least likely to be referenced in the
near future

Each page could be tagged with the time of
last reference. This would require a great
deal of overhead.

Basic Replacement

Algorithms
 Least Recently Used (LRU)

Page address

stream 3 1 5 4 3
2 2 2 2 2 2 3 3 3
LRU 3 3 3 5 5 5 5 3
1 1 1 4 4 4 2
F F F F

10

Basic Replacement

Algorithms
First-in, first-out (FIFO)

Treats page frames allocated to a process as
a circular buffer

Pages are removed in round-robin style
Simplest replacement policy to implement

Page that has been in memory the longest is
replaced

These pages may be needed again very soon

11

Page address

Basic Replacement

Algorithms
* First-in, first-out (FIFO)

stream

FIFO

3 1 5 4 3
3 5 z 5 3

3 3 3 3 2 2
1 1 1 4 4 4
F F F F

12

Basic Replacement
Algorithms

Clock Policy
Additional bit called a use bit

When a page is first loaded in memory, the use bit
Issettol

When the page Is referenced, the use bit is set to 1

When it Is time to replace a page, the first frame
encountered with the use bit set to O Is replaced.

During the search for replacement, each use bit set
to 1 is changed to O

13

Page address

stream 2 3 2 1 5 2 4 3 3 2 5 2
2 2 2 2 2 2 4 1 1 2 2 2
OPT 3 3 3 3 3 3 3 3 3 3 3
1 5 3 51 5] 5] [C5] [5 3
F F F
2 2 2 2 2 2 2 2 3 3 3 3
LRU 3 3 3 5 3 3 5 3 5 5 3
1 1 1 4 1 1 2 2 2
F F F F
2 2 2 2 5 5 3 5 3 3 3 3
FIFO 3 3 3 3 2 2 2 2 2 5 5
1 1 1 4 4 4 4 4 2
F F F F F F
2¢] [2*] [2*]+ 2* 5% [S*][5%+ 5* 3# 3% | 3% 3%
CLOCK —» 3% [3%] [3*]} 3 2% [2%] [2% | 2 |- 2" 2 2*
> i* 1] 1 #| [&* 1 4 7 [&F
F F F F F

F = page fault occurring after the frame allocation is initially filled

Figure 8.15 Behavior of Four Page-Replacement Algorithms

First frame in

circalar buffer of
-1 0 frames that are
candidates for replacement

next frame 2
pointer

(b} State of buffer just after the next page replacement

{a) State of buffer just prior to a page replacement

Figure 8.16 Example of Clock Policy Operation

15

Comparison of Placement
Algorithms

n 404
&
E FIFO
ﬁ | CLOCK
g5 LRU
= 20
&
7 1s OPT
=
= 10
[
0 —»
6 8 10 12 14

Number of Frames Allocated

Figure 8.17 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

16

First frame in
circular buffer
for this process

n-1 0

Page 9
not accessed
recently;
misclified

Page 94
not accessed
recently;

niot musclified

9 Page 13 Page 95 2
not accessed accessed
l‘BDEI'lﬂ}'; rmﬁnﬂ}';
not modified not modified
Page 47 Page 96
not accessed accessed
recently; recently; Last
g \ not modified not moditied| > rf; aced
Next
replaced ety

not accessed
recently;

Page 45 =
Page 121 accessed b
T accessed recently; 4

recently;
not modified

not modified

Figure 8.18 The Clock Page-Replacement Algorithm [GOLDS9]

17

Resident Set Size

Fixed-allocation

Gives a process a fixed number of pages
within which to execute

When a page fault occurs, one of the pages
of that process must be replaced

Variable-allocation

Number of pages allocated to a process
varies over the lifetime of the process

18

Resident Set Size

Local scope

Replace page only within the process that
faulted

Global scope

Replace page in any frame across all
Processes

19

Fixed Allocation

Variable Allocation

Resident Set Size

Local Replacement

(zlobal Replacement

eNumber of frames allocated
to process is fixed.

*Page to be replaced is chosen
from among the frames
allocated to that process.

*]N ot possible.

*The number of frames
allocated to a process may be
changed from time to time,
to maintain the working set
of the process.

*Page 10 be replaced is chosen
from among the frames
allocated to that process.

*Page to be replaced is chosen
from all available frames in
main memory; this causes
the size of the resident set of
processes to vary.

20

Fixed Allocation, Local Scope

Decide ahead of time the amount of
allocation to give a process

One replacement clock or queue per
process

If allocation is too small, there will be a
high page fault rate

If allocation Is too large there will be too
few programs in main memory

21

Variable Allocation,
Global Scope

Easiest to implement

Adopted by many operating systems

Operating system keeps list of free
frames

Free frame Is added to resident set of
process when a page fault occurs

If no free frame, replaces one from
another process

22

Variable Allocation,
ocal Scope

One global clock or queue for all processes

When new process added, allocate number of
page frames based on application type,
program request, or other criteria

When page fault occurs, select page from
among the resident set of the process that
suffers the fault

Reevaluate allocation from time to time

23

Sequence of
Page
References

24

15

18

24

17

18

24

18

17

17

24

17

24

18

Variable Allocation,

ocal Scope

Window Size, A

2 3 4 5

24 24 24 24
2415 2415 2415 2415
1518 241518 241518 241518
18 23 1518 23 24151823 24151823
2324 18 23 24 . .

24 17 232417 18 23 24 17 1518232417
1718 241718 . 18 23 24 17
18 24 . 241718 .

. 18 24 . 241718
18 17 2418 17 . .

17 18 17 . .
1715 1715 181715 24181715
1524 171524 171524 .

24 17 . . 171524

. 2417 . .

24 18 1724 18 1724 18 1517 24 18

24

Cleaning Policy

The opposite of Fetch Policy

Demand cleaning

A page Is written out only when it has been
selected for replacement

Precleaning
Pages are written out in batches

25

Cleaning Policy

Best approach uses page buffering

Replaced pages are placed in two lists
Modified and unmodified

Pages in the modified list are periodically
written out In batches

Pages in the unmodified list are either
reclaimed If referenced again or lost when
Its frame 1s assigned to another page

26

_oad Control

Determines the number of processes that
will be resident in main memory

oo few processes, many occasions
when all processes will be blocked and
much time will be spent in swapping

Too many processes will lead to
thrashing

27

Multiprogramming

Processor Utilization

Multiprogramming Level

Figure 8.21 Multiprogramming Effects

28

Process Suspension

Lowest priority process

Faulting process

This process does not have its working set
In main memory so it will be blocked

anyway
Last process activated

This process is least likely to have its
working set resident

29

Process Suspension

Process with smallest resident set

This process requires the least future effort
to reload

Largest process
Obtains the most free frames

Process with the largest remaining
execution window

30

	O/S Design Decisions
	O/S Design Decisions
	Fetch Policy
	Placement Policy
	Replacement Policy
	Replacement Policy
	Basic Replacement Algorithms
	Basic Replacement Algorithms
	Basic Replacement Algorithms
	Basic Replacement Algorithms
	Basic Replacement Algorithms
	Basic Replacement Algorithms
	Basic Replacement Algorithms
	Comparison of Placement Algorithms
	Resident Set Size
	Resident Set Size
	Resident Set Size
	Fixed Allocation, Local Scope
	Variable Allocation,Global Scope
	Variable Allocation,Local Scope
	Variable Allocation,Local Scope
	Cleaning Policy
	Cleaning Policy
	Load Control
	Multiprogramming
	Process Suspension
	Process Suspension

