
2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 154

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks
Deadlock principles: diagrams and graphs
Deadlock prevention: changing the rules
Deadlock avoidance: optimizing the allocation
Deadlock detection: recovering after the facts

2.d Deadlocks
Deadlock principles: diagrams and graphs

Illustration of a deadlock

A deadlock is a permanent blocking of a set of threads
a deadlock can happen while threads/processes are competing
for system resources or communicating with each other
there is no universal efficient solution against deadlocks

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 155

2.d Deadlocks
Deadlock principles: diagrams and graphs

Competing processes

Illustration of a deadlock
two processes, P and Q, compete for two resources, A and B
each process needs exclusive use of each resource

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 156

2.d Deadlocks
Deadlock principles: diagrams and graphs

Happy scheduling 1

Illustration of a deadlock — scheduling path 1 ☺
Q executes everything before P can ever get A
when P is ready, resources A and B are free and P can proceed

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 157

2.d Deadlocks
Deadlock principles: diagrams and graphs

Happy scheduling 2

Illustration of a deadlock — scheduling path 2 ☺
Q gets B and A, then P is scheduled; P wants A but is blocked by
A’s mutex; so Q resumes and releases B and A; P can now go

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 158

2.d Deadlocks
Deadlock principles: diagrams and graphs

Bad scheduling → deadlock

Illustration of a deadlock — scheduling path 3
Q gets only B, then P is scheduled and gets A; now both P and
Q are blocked, each waiting for the other to release a resource

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

deadlock

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 159

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 160

2.d Deadlocks
Deadlock principles: diagrams and graphs

Joint progress diagram

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 161

2.d Deadlocks
Deadlock principles: diagrams and graphs

Deadlocks depend on the program and the scheduling
program design

the order of the statements in the
code creates the “landscape” of
the joint progress diagram
this landscape may contain gray
“swamp” areas leading to deadlock

scheduling condition
the interleaved dynamics of
multiple executions traces a
“path” in this landscape
this path may sink in the swamps

2.d Deadlocks
Deadlock principles: diagrams and graphs

Competing processes

Changing the program changes the landscape
here, P releases A before getting B
deadlocks between P and Q are not possible anymore

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Release A
...
Get B
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 162

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 163

2.d Deadlocks
Deadlock principles: diagrams and graphs

→ no swamp area: there exists
no path leading to deadlock

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Joint progress diagram

RAGs

Snapshot of concurrency: Resource Allocation Graph
a resource allocation graph is a directed graph that depicts a
state of the system of resources and processes

2.d Deadlocks
Deadlock principles: diagrams and graphs

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 164

A deadlock’s RAG

Resource allocation graphs & deadlocks
there is deadlock when a closed chain of processes exists
each process holds at least one resource needed by the next
process

2.d Deadlocks
Deadlock principles: diagrams and graphs

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 165

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 166

2.d Deadlocks
Deadlock principles: diagrams and graphs

Design conditions for deadlock (create the swamps)
1. mutual exclusion — the design contains protected critical

regions; only one process at a time may use these

2. hold & wait — the design is such that, while inside a critical
region, a process may have to wait for another critical region

3. no resource preemption — there must not be any hardware
or O/S mechanism forcibly removing a process from its CR

+ Scheduling condition for deadlock (go to the swamps)
4. circular wait — two or more hold-&-wait’s are happening in a

circle: each process holds a resource needed by the next

= Deadlock!

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 167

2.d Deadlocks
Deadlock principles: diagrams and graphs

Three strategies for dealing with deadlocks
deadlock prevention — changing the rules

one or several of the deadlock conditions 1., 2., 3. or 4.
are removed a priori (design decision)

deadlock avoidance — optimizing the allocation
deadlock conditions 1., 2., 3. are maintained but resource
allocation follows extra cautionary rules (runtime decision)

deadlock detection — recovering after the facts
no precautions are taken to avoid deadlocks, but the
system cleans them periodically (“deadlock collector”)

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 168

2.d Deadlocks
Deadlock prevention: changing the rules

Remove one of the design or scheduling conditions?
remove “mutual exclusion”?
→ not possible: must always be supported by the O/S
remove “hold & wait”?

require that a process gets all its resources at one time
→ inefficient and impractical: defeats interleaving, creates

long waits, cannot predict all resource needs
remove “no preemption” = allow preemption?

require that a process releases and requests again → ok
remove “circular wait”?

ex: impose an ordering of resources → inefficient, again

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 169

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

Allow all conditions, but allocate wisely
given a resource allocation request, a decision is made
dynamically whether granting this request can potentially lead
to a deadlock or not

do not start a process if its demands might lead to
deadlock
do not grant an incremental resource request to a running
process if this allocation might lead to deadlock

avoidance strategies requires knowledge of future process
request (calculating “chess moves” ahead)

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 170

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

Resource allocation denial: the “banker's algorithm”
at any time, the state of the system is the current allocation of
multiple resources to multiple processes

a safe state is where there is at least one sequence that
does not result in deadlock
an unsafe state is a state where there is no such
sequence

analogy = banker refusing to grant a loan if funds are too low
to grant more loans + uncertainty about how long a customer
will repay

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

Determination of a safe state

Resource allocation denial: the “banker's algorithm”
can a process run to completion with the available resources?

compare what is still
needed with what is left

(a)

(b)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 171

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

Determination of a safe state (cont'd)

Resource allocation denial: the “banker's algorithm”
idea: refuse to allocate if it may result in deadlock

(c)

(d)
all could run to completion:
→ thus, (a) was a safe state

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 172

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 173

Determination of an unsafe state

Resource allocation denial: the “banker's algorithm”
idea: refuse to allocate if it may result in deadlock

(a) safe ← (a’)

(b’) unsafe

potential for deadlock (we don’t
know how long Ri will be kept)
→ thus, (b’) is an unsafe state:

don’t allow (b’) to
happen

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 174

2.d Deadlocks
Deadlock detection: recovering after the facts

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 175

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks
Deadlock principles: diagrams and graphs
Deadlock prevention: changing the rules
Deadlock avoidance: optimizing the allocation
Deadlock detection: recovering after the facts

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 176

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 177

Principles of Operating Systems
CS 446/646

0. Course Presentation

1. Introduction to Operating Systems

2. Processes

3. Memory Management

4. CPU Scheduling

5. Input/Output

6. File System

7. Case Studies

