Principles of Operating Systems
CS 446/646

2. Processes

d. Deadlocks

v" Deadlock principles: diagrams and graphs

v" Deadlock prevention: changing the rules

v" Deadlock avoidance: optimizing the allocation
v" Deadlock detection: recovering after the facts

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 154

2.d Deadlocks
Deadlock principles: diagrams and graphs

» A deadlock is a permanent blocking of a set of threads

v"adeadlock can happen while threads/processes are competing
for system resources or communicating with each other

v"there is no universal efficient solution against deadlocks

=

)

1
3:
c b

I IR -

=
1=
| (ol

{=

e ———————

(a) Deadlock possible

lllustration of a deadlock

2/28/2006

i3))
!]
Fom

=

g

Cwom

(b) Deadlock

CS 446/646 - Principles of Operating Systems - 2. Processes

155

2.d Deadlocks
Deadlock principles: diagrams and graphs

» lllustration of a deadlock
v' two processes, P and Q, compete for two resources, A and B
v"each process needs exclusive use of each resource

Process P Process Q
[Get A Get B)
A required B required
(< Get B Get A A
§ \ Release A Release B r
B required - - - - - - A required
\ Release B Release A J

Competing processes

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 156

2.d Deadlocks
Deadlock principles: diagrams and graphs

> lllustration of a deadlock — scheduling path 1 ©
v Q executes everything before P can ever get A
v when P is ready, resources A and B are free and P can proceed

Process P Process Q
............. >
ARNsssEEEEEEEEEEsEEEEEEEaEs - & ST
(| Get A 5 Get B)
A required B required
(1| Get B Get A ¢
¢ V| Release A Release B &
B required - - - "-,‘ - - - A required

\ Release B Release A /

Happy scheduling 1

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 157

2.d Deadlocks
Deadlock principles: diagrams and graphs

> lllustration of a deadlock — scheduling path 2 ©

v' Qgets B and A, then P is scheduled; P wants A but is blocked by
A’s mutex; so Q resumes and releases B and A; P can now go

Process P Process Q
L / ’:...' > o
(| Get A ¥ Get B)
A required B required
(< | Get B 21 | (Get A Y ¢
4 V| Release A Release B %
B required - - - 3 - - - A required
\ Release B Release A /

Happy scheduling 2

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 158

2.d Deadlocks
Deadlock principles: diagrams and graphs

> lllustration of a deadlock — scheduling path 3 ®

v Q gets only B, then P is scheduled and gets A; now both P and
Q are blocked, each waiting for the other to release a resource

Process P Process Q
(Get A %Get B)
A required B required
(< Get B Get A) ¢
v V| Release A :SF“/PL, Release B r
> deadlock <C
B required - - - N - - - A required

\ Release B Release A Y

Bad scheduling — deadlock

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 159

2.d Deadlocks
Deadlock principles: diagrams and graphs

Progress
Al A2
Release

of Q o
id
.

d
want A

A Release // /7

Required GZA o /// \\\\\Q\\i
Re qﬁi red Pincritabic § ‘%&

5
Get B 4 \\\ >
‘4
6
>
‘ Progress
Get A GetB Release A Release B of P

g = both P and QQ want resource A

\T‘Y\J
Required _/W

l:' = deadlock-inevitable tegion B Required
Joint progress diagram

s = both P and Q want resource B

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 160

2.d Deadlocks
Deadlock principles: diagrams and graphs

» Deadlocks depend on the program and the scheduling

v' program design 7
= the order of the statements in the LD
code creates the “landscape” of S
the joint progress diagram
= this landscape may contain gray
“swamp” areas leading to deadlock
v" scheduling condition 7
= the interleaved dynamics of H qes
multiple executions traces a | |

“path” in this landscape
= this path may sink in the swamps —

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 161

2.d Deadlocks
Deadlock principles: diagrams and graphs

» Changing the program changes the landscape
v" here, P releases A before getting B
v"deadlocks between P and Q are not possible anymore

Process P Process Q
Get A Get B)
A required { L L B required
(Release A Get A Ae
Get B Release B >,
B required { . - - - A required
Release B Release A y

Competing processes

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 162

2.d Deadlocks

Deadlock principles: diagrams and graphs

Progress

of
A

Release

A2

A3

A Release

P and Q

Required B

Get A

LN

§P and QN

7

B
Required

want B N

Get B

1

— N0 swamp area: there exists
no path leading to deadlock

Joint progress diagram

2/28/2006

Get A

Release A GetB Release B

\/-Y-\JV-Y'\J

A Required

B Required

CS 446/646 - Principles of Operating Systems - 2. Processes

Progress
of P

163

2.d Deadlocks
Deadlock principles: diagrams and graphs

» Snhapshot of concurrency: Resource Allocation Graph
v'aresource allocation graph is a directed graph that depicts a

state of the system of resources and processes

Reques

ts

Held by

P1 > @ Ra p] ® Ra
(a) Resouce is requested (b) Resource is held
Ra Ra
e eae
A A
= e & ey
‘b_é‘?c o ,_&Q"c &
Pl P2 Pl P2
"’;:/ é\ﬁ‘ "';:/ c}o
q{q.)7 q’.ﬂ- %
e oo
Rb Rb

{¢) Circular wait

2/28/2006

RAGS

(d) No deadlock

CS 446/646 - Principles of Operating Systems - 2. Processes

164

2.d Deadlocks
Deadlock principles: diagrams and graphs

» Resource allocation graphs & deadlocks
v" there is deadlock when a closed chain of processes exists
v"each process holds at least one resource needed by the next

process

P1 P2 P3 P4
1 1 1 1
Ra Rb Rc Rd

A deadlock’s RAG

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 165

2.d Deadlocks
Deadlock principles: diagrams and graphs

» Design conditions for deadlock (create the swamps)

1. mutual exclusion — the design contains protected critical
regions; only one process at a time may use these

2. hold & wait — the design is such that, while inside a critical
region, a process may have to wait for another critical region

3. no resource preemption — there must not be any hardware
or O/S mechanism forcibly removing a process from its CR
+ Scheduling condition for deadlock (go to the swamps)
4. circular wait — two or more hold-&-wait’s are happening in a
circle: each process holds a resource needed by the next

= Deadlock!

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 166

2.d Deadlocks
Deadlock principles: diagrams and graphs

> Three strategies for dealing with deadlocks
v"deadlock prevention — changing the rules

= one or several of the deadlock conditions 1., 2., 3. or 4.
are removed a priori (design decision)

v" deadlock avoidance — optimizing the allocation

= deadlock conditions 1., 2., 3. are maintained but resource
allocation follows extra cautionary rules (runtime decision)

v" deadlock detection — recovering after the facts

= no precautions are taken to avoid deadlocks, but the
system cleans them periodically (“deadlock collector”)

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 167

2.d Deadlocks
Deadlock prevention: changing the rules

» Remove one of the design or scheduling conditions?
v remove “mutual exclusion™?
— not possible: must always be supported by the O/S
v remove “hold & wait™?
= require that a process gets all its resources at one time

— Inefficient and impractical: defeats interleaving, creates
long waits, cannot predict all resource needs

v remove “no preemption” = allow preemption?

= require that a process releases and requests again — ok
v remove “circular wait"?

= ex: impose an ordering of resources — inefficient, again

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 168

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Allow all conditions, but allocate wisely

v"given a resource allocation request, a decision is made
dynamically whether granting this request can potentially lead
to a deadlock or not

= do not start a process Iif its demands might lead to
deadlock

= do not grant an incremental resource request to a running
process If this allocation might lead to deadlock

v'avoidance strategies requires knowledge of future process
request (calculating “chess moves” ahead)

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 169

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm”

v’ at any time, the state of the system is the current allocation of
multiple resources to multiple processes

= asafe state is where there is at least one sequence that
does not result in deadlock

= an unsafe state Is a state where there is no such
sequence

v"analogy = banker refusing to grant a loan if funds are too low
to grant more loans + uncertainty about how long a customer
will repay

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 170

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm”
v/ can a process run to completion with the available resources?

El E2 B3 Rl R2 E3 El E2 B3

Pl 3 2 2 Pl 1 0 0 Pl 2 2 2

| & 1 3 P2 & 1 2 P2 0 0 1

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
RL__R2 R RIL R RS .7 compare what is still
o [3 | 6 | Lo [1 | 1 | g~ , ,
Eesource vector R Available vector V needed W|th What IS |eft
(a) {a) Initial state
El E2 B3 El R2 B3 El E2 E

Pl 3 2 2 Pl 1 0 0 Fl 2

P2 0 0 0 2 || o 0 o |l 2 || o 0 0

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-4A
Rl B2 B3 Rl 2 B3 *
L e [3] s | [[21 5] -7
Resource vector R Available vector V

(b) (b) P2 runs to completion
\! Determination of a safe state

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 171

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm
v' idea: refuse to allocate if it may result in deadlock

Rl R2 F3 El R2 E3 Rl R2 F3

Pl 0] 0 Pl 0 0 0 Pl 0] 0

P2 0] P2 0 0 0 P2 0] 0

F3 3 1 4 F3 2 1 1 F3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matriz C Allocation matrix A C-4a
Rl E2 B3 Rl R2 B3 *
/
\¥ | s [3 | ¢ | ER | 3 | &~
Fesource vector R Available vector ¥
(C) (¢} P1 runs to completion
Rl R2 R3 El R2 E3 Rl R2 R3

Pl 0] 0 Pl 0 0 0 Pl 0] 0

P2 0 0 0 P2 0 0 0 P2 0 0 0

F3 0 0 0 F3 0 0 0 F3 0 0 0

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matriz C Allocation matrix A C-4A
Rl R2 R3 Rl R2 R3 *
9 3 6 E 3 1] &~ ’ _
Resource vector R Available vector V all could run to completion:
(d) (@) P3 runs to completion — thus, (a) was a safe state
]

Determination of a safe state (cont'd)

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 172

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm
v' idea: refuse to allocate if it may result in deadlock

R1 R2 R3 R1 R2 R3 Rl R2 R3
Pl 3 2 2 Pl 1 o L] Pl 2 2 2
P2 &) 1 3 P2 5 1 1 P2 1 4] 2
P3 3 1 4 P3 2 1 1 P3 1] 3
P4 4 2 2 P4 L] o 2 P4 4 2 (0]
Claim matrix 'C Allocation matrix A C—-A
R1 R2 E3 Rl R2 E3
s T 5T e [T 1il2]
Resource vector R Availlable vector ¥V
(a) Safe e (a’) (a) Initial state
R1 R2 R3 R1 R2 R3 R2 R3
Pl 3 2 2 1| 2 0 1 2 1
P2 6 1 3 P2 5 1 1 0] 2
P3 3 1 4 P3 2 1 1 o 3
P4 4 2 2 P4 L]] 2 2 0
Claim matrix C Allocation matrix A C—A
| = | = | = | . potential for deadlock (we don't
, Resource vector R Avgllable vector ¥V knOW hOW |Ong Ri WI” be kept)
(b) unsafe (b) P1 requests one unit each of R1 and R3 —> thus’ (b1) |S an unsafe State
Determination of an unsafe state don't allow (b’) to

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes happen 173

2.d Deadlocks
Deadlock detection: recovering after the facts

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 174

Principles of Operating Systems
CS 446/646

2. Processes

d. Deadlocks

v" Deadlock principles: diagrams and graphs

v" Deadlock prevention: changing the rules

v" Deadlock avoidance: optimizing the allocation
v" Deadlock detection: recovering after the facts

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 175

Principles of Operating Systems
CS 446/646

2. Processes

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 176

Principles of Operating Systems
CS 446/646

Memory Management
CPU Scheduling
Input/Output

File System

N o 0 b~

Case Studies

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 177

