
2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 154

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks
9 Deadlock principles: diagrams and graphs
9 Deadlock prevention: changing the rules
9 Deadlock avoidance: optimizing the allocation
9 Deadlock detection: recovering after the facts

2.d Deadlocks
Deadlock principles: diagrams and graphs

Illustration of a deadlock

¾ A deadlock is a permanent blocking of a set of threads
9 a deadlock can happen while threads/processes are competing

for system resources or communicating with each other
9 there is no universal efficient solution against deadlocks

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 155

2.d Deadlocks
Deadlock principles: diagrams and graphs

Competing processes

¾ Illustration of a deadlock
9 two processes, P and Q, compete for two resources, A and B
9 each process needs exclusive use of each resource

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 156

2.d Deadlocks
Deadlock principles: diagrams and graphs

Happy scheduling 1

¾ Illustration of a deadlock — scheduling path 1 ☺
9 Q executes everything before P can ever get A
9 when P is ready, resources A and B are free and P can proceed

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 157

2.d Deadlocks
Deadlock principles: diagrams and graphs

Happy scheduling 2

¾ Illustration of a deadlock — scheduling path 2 ☺
9 Q gets B and A, then P is scheduled; P wants A but is blocked by

A’s mutex; so Q resumes and releases B and A; P can now go

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 158

2.d Deadlocks
Deadlock principles: diagrams and graphs

Bad scheduling → deadlock

¾ Illustration of a deadlock — scheduling path 3 /
9 Q gets only B, then P is scheduled and gets A; now both P and

Q are blocked, each waiting for the other to release a resource

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

deadlock

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 159

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 160

2.d Deadlocks
Deadlock principles: diagrams and graphs

Joint progress diagram

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 161

2.d Deadlocks
Deadlock principles: diagrams and graphs

¾ Deadlocks depend on the program and the scheduling
9 program design

� the order of the statements in the
code creates the “landscape” of
the joint progress diagram

� this landscape may contain gray
“swamp” areas leading to deadlock

9 scheduling condition
� the interleaved dynamics of

multiple executions traces a
“path” in this landscape

� this path may sink in the swamps

2.d Deadlocks
Deadlock principles: diagrams and graphs

Competing processes

¾ Changing the program changes the landscape
9 here, P releases A before getting B
9 deadlocks between P and Q are not possible anymore

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Release A
...
Get B
...
Release B
...

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 162

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 163

2.d Deadlocks
Deadlock principles: diagrams and graphs

→ no swamp area: there exists
no path leading to deadlock

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Joint progress diagram

RAGs

¾ Snapshot of concurrency: Resource Allocation Graph
9 a resource allocation graph is a directed graph that depicts a

state of the system of resources and processes

2.d Deadlocks
Deadlock principles: diagrams and graphs

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 164

A deadlock’s RAG

¾ Resource allocation graphs & deadlocks
9 there is deadlock when a closed chain of processes exists
9 each process holds at least one resource needed by the next

process

2.d Deadlocks
Deadlock principles: diagrams and graphs

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 165

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 166

2.d Deadlocks
Deadlock principles: diagrams and graphs

¾ Design conditions for deadlock (create the swamps)
1. mutual exclusion — the design contains protected critical

regions; only one process at a time may use these

2. hold & wait — the design is such that, while inside a critical
region, a process may have to wait for another critical region

3. no resource preemption — there must not be any hardware
or O/S mechanism forcibly removing a process from its CR

+ Scheduling condition for deadlock (go to the swamps)
4. circular wait — two or more hold-&-wait’s are happening in a

circle: each process holds a resource needed by the next

= Deadlock!

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 167

2.d Deadlocks
Deadlock principles: diagrams and graphs

¾ Three strategies for dealing with deadlocks
9 deadlock prevention — changing the rules

� one or several of the deadlock conditions 1., 2., 3. or 4.
are removed a priori (design decision)

9 deadlock avoidance — optimizing the allocation
� deadlock conditions 1., 2., 3. are maintained but resource

allocation follows extra cautionary rules (runtime decision)

9 deadlock detection — recovering after the facts
� no precautions are taken to avoid deadlocks, but the

system cleans them periodically (“deadlock collector”)

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 168

2.d Deadlocks
Deadlock prevention: changing the rules

¾ Remove one of the design or scheduling conditions?
9 remove “mutual exclusion”?

→ not possible: must always be supported by the O/S
9 remove “hold & wait”?

� require that a process gets all its resources at one time
→ inefficient and impractical: defeats interleaving, creates

long waits, cannot predict all resource needs
9 remove “no preemption” = allow preemption?

� require that a process releases and requests again → ok
9 remove “circular wait”?

� ex: impose an ordering of resources → inefficient, again

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 169

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

¾ Allow all conditions, but allocate wisely
9 given a resource allocation request, a decision is made

dynamically whether granting this request can potentially lead
to a deadlock or not
� do not start a process if its demands might lead to

deadlock
� do not grant an incremental resource request to a running

process if this allocation might lead to deadlock
9 avoidance strategies requires knowledge of future process

request (calculating “chess moves” ahead)

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 170

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

¾ Resource allocation denial: the “banker's algorithm”
9 at any time, the state of the system is the current allocation of

multiple resources to multiple processes
� a safe state is where there is at least one sequence that

does not result in deadlock
� an unsafe state is a state where there is no such

sequence
9 analogy = banker refusing to grant a loan if funds are too low

to grant more loans + uncertainty about how long a customer
will repay

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

Determination of a safe state

¾ Resource allocation denial: the “banker's algorithm”
9 can a process run to completion with the available resources?

compare what is still
needed with what is left

(a)

(b)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 171

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

Determination of a safe state (cont'd)

¾ Resource allocation denial: the “banker's algorithm”
9 idea: refuse to allocate if it may result in deadlock

(c)

(d)
all could run to completion:
→ thus, (a) was a safe state

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 172

2.d Deadlocks
Deadlock avoidance: optimizing the allocation

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 173

Determination of an unsafe state

¾ Resource allocation denial: the “banker's algorithm”
9 idea: refuse to allocate if it may result in deadlock

(a) safe ← (a’)

(b’) unsafe

potential for deadlock (we don’t
know how long Ri will be kept)
→ thus, (b’) is an unsafe state:

don’t allow (b’) to
happen

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 174

2.d Deadlocks
Deadlock detection: recovering after the facts

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 175

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks
9 Deadlock principles: diagrams and graphs
9 Deadlock prevention: changing the rules
9 Deadlock avoidance: optimizing the allocation
9 Deadlock detection: recovering after the facts

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 176

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks

2/28/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 177

Principles of Operating Systems
CS 446/646

0. Course Presentation

1. Introduction to Operating Systems

2. Processes

3. Memory Management

4. CPU Scheduling

5. Input/Output

6. File System

7. Case Studies

