
2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 132

2.c Concurrency
Mutual exclusion & synchronization — mutexes

out shared by all consumers → mutex among consumers
producer not concerned: can still add items to buffer at any time

lock(out_mutex);

unlock(out_mutex);

mutex out_mutex;

void consumer()
{
while (true) {

while (out == in);

item = b[out];
out++;

consume(item);
}

}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;

}
}

item[] b;
int in, out;

but this implementation is flawed: all
consumers pass the “while” at once,
end up waiting at lock, then enter
even if buffer is empty . . .

Unbounded buffer, 1 producer, N consumers

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 133

2.c Concurrency
Mutual exclusion & synchronization — mutexes

Unbounded buffer, 1 producer, N consumers

void consumer()
{
while (true) {

lock(out_mutex);
while (out == in);
item = b[out];
out++;
unlock(out_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;

}
}

item[] b;
int in, out;

out shared by all consumers → mutex among consumers
producer not concerned: can still add items to buffer at any time

this implementation is correct: even if
a consumer loops inside, it means the
buffer is empty anyway, so the others
may as well be blocked outside . . .

mutex out_mutex;

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 134

2.c Concurrency
Mutual exclusion & synchronization — mutexes

Unbounded buffer, N producers, N consumers

void consumer()
{
while (true) {

lock(out_mutex);
while (out == in);
item = b[out];
out++;
unlock(out_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();
lock(in_mutex);
b[in] = item;
in++;
unlock(in_mutex);

}
}

item[] b;
int in, out;

in shared by all producers → other mutex among producers
consumers and producers still (relatively) independent

still correct, but in all cases the
consumers are busy waiting . . .

mutex out_mutex;
mutex in_mutex;

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 135

2.c Concurrency
Mutual exclusion & synchronization — semaphores

Synchronization
processes can also cooperate by means of simple signals,
without defining a “critical region”
like mutexes: instead of looping, a process can block in some
place until it receives a specific signal from the other process

Binary semaphore ⇔ mutex
a binary semaphore is a variable that has a value 0 or 1
a wait operation attempts to decrement the semaphore

1 → 0 and goes through; 0 → blocks
a signal operation attempts to increment the semaphore

1 → 1, no change; 0 → unblocks or becomes 1

Binary semaphore ⇔ mutex

2.c Concurrency
Mutual exclusion & synchronization — semaphores

value = 1 (“off”)
no queue

signal signal signal signal
signal

value = 0
1 in queue

wait

value = 0
2 in queue

wait

. . .

value = 0
3 in queue

wait

value = 0 (“on”)
no queue

wait

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 136

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 137

2.c Concurrency
Mutual exclusion & synchronization — semaphores

void consumer()
{
while (true) {

while (out == in);
if (out == in)

wait(Bsem);
item = b[out];
out++;

consume(item);
}

}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;
if (out == in–1)

signal(Bsem);
}

}

item[] b; bin_semaphore Bsem = 0;
int in, out;

Unbounded buffer, 1 producer, 1 consumer with sync
if buffer is empty, the consumer waits on a semaphore
if buffer just got one item, the producer signals to the consumer

unfortunately, this can lead to an
inconsistent semaphore state . . .

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 138

2.c Concurrency
Mutual exclusion & synchronization — semaphores

value = 0
no queue

out

in

value = 0
no queue

x = produce();
b[in++] = x;1.

value = 0
no queue

x = b[out++];
consume(x);2.

value = 0
1 in queue

x = b[out++];
consume(x);
wait(sem);

3.
empty →

value = 1
1 in queue

value = 0
no queue

transitory state

x = produce();
b[in++] = x;
signal(sem);

4.
one item →

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 139

2.c Concurrency
Mutual exclusion & synchronization — semaphores

value = 0
no queue

value = 0
no queue

x = b[out++];
consume(x);3.’

value = 1
no queue

x = produce();
b[in++] = x;
signal(sem);

4.’

wait(sem);
5.’

value = 0
no queue

x = b[out++];
consume(x);
wait(sem); →

NOT
empty →

now
empty →
. . . but goes through

6.’ x = b[out++];
consume(x);

??

→ the last “signal” was not matched by
a prior “wait”: they missed each other

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 140

2.c Concurrency
Mutual exclusion & synchronization — semaphores

void consumer()
{
while (true) {

lock(buf_mutex);
if (out == in)

wait(Bsem);
item = b[out];
out++;
unlock(buf_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();
lock(buf_mutex);
b[in] = item;
in++;
if (out == in–1)

signal(Bsem);
unlock(buf_mutex);

}
}

item[] b; bin_semaphore Bsem = 0;
int in, out;

Unbounded buffer, 1 producer, 1 consumer with sync
we need to create critical areas to keep “consuming” and
“checking the semaphore” together

but there is a deadlock: here the consumer is
blocking the producer, not other consumers . . .

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 141

2.c Concurrency
Mutual exclusion & synchronization — semaphores

Unbounded buffer, 1 producer, 1 consumer with sync
the consumer needs to remember the current state of in &
out, so it can exit the CR before checking the semaphore

void consumer()
{
while (true) {

if (out == in0)
wait(Bsem);

lock(buf_mutex);
item = b[out];
out++; in0 = in;
unlock(buf_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();
lock(buf_mutex);
b[in] = item;
in++;
if (out == in–1)

signal(Bsem);
unlock(buf_mutex);

}
}

item[] b; bin_semaphore Bsem = 0;
int in, out;

finally correct!

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 142

2.c Concurrency
Mutual exclusion & synchronization — semaphores

Semaphores are used for signaling between processes
semaphores can be used for mutual exclusion
binary semaphores are the same as mutexes
integer semaphores can be used to allow more than one
process inside a critical region; generally:

the positive value of an integer semaphore corresponds to
a maximum number of processes allowed concurrently
inside a critical region
the negative value of an integer semaphore corresponds to
the number of processes currently waiting in the queue

binary and integer semaphores can also be used for
synchronization

Integer semaphore ⇔ “thermometer”

2.c Concurrency
Mutual exclusion & synchronization — semaphores

value = +2
no queue

value = –1
1 in queue

wait

0

. . .

value = –2
2 in queue

wait

00

value = 0
no queue

wait

0

value = +1
no queue

wait

0

signal signal signal signal

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 143

2.c Concurrency
Mutual exclusion & synchronization — semaphores

Example of semaphore mechanism

All semaphores maintain a queue of waiting processes

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 144

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 145

2.c Concurrency
Mutual exclusion & synchronization — semaphores

Producer/consumer with an integer semaphore
no need for a condition: the semaphore itself keeps track of the
size of the buffer

void producer()
{
while (true) {

item = produce();
lock(buf_mutex);
b[in] = item;
in++;
if (out == in–1)

signal(sem);
unlock(buf_mutex);

}
}

item[] b; semaphore sem = 0;
int in, out;

correct!

void consumer()
{
while (true) {

if (out == in0)
wait(sem);

lock(buf_mutex);
item = b[out];
out++;
unlock(buf_mutex);
consume(item);

}
}

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 146

2.c Concurrency
Mutual exclusion & synchronization — semaphores

value = +1
no queue

x = produce();
b[in++] = x;
signal(sem);

4.’

wait(sem);
5.’ value = 0

no queue

value = –1
1 in queue

x = b[out++];
consume(x);
wait(sem);

6.’ x = b[out++];
consume(x);

the consumer is blocked, as it should be; the producer may proceed . . .

value = 0
no queue

x = b[out++];
consume(x);

3.’
wait(sem);

value = +1
no queue

How semaphores may be implemented

2.c Concurrency
Mutual exclusion & synchronization — semaphores

Two possible implementations of semaphores
Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/23/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 147

