
2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 111

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 2 — “indivisible” lock variable
1. thread A reaches CR and

finds the lock at 0 and sets
it in one shot, then enters

1.1’ even if B comes right
behind A, it will find that
the lock is already at 1

2. thread A exits CR, then
resets lock to 0

3. thread B finds the lock at 0
and sets it to 1 in one shot,
just before entering CR

critical regionB
A

B
A

B
A

B
A

test-and-set-lock

set lock off

Implementation 2 — “indivisible” lock variable
the indivisibility of the “test-lock-
and-set-lock” operation can be
implemented with the hardware
instruction TSL

2.c Concurrency
Mutual exclusion by busy waiting

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

TSL

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 112

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 113

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 2 — “indivisible” lock ⇔ one key
1. thread A reaches CR and

finds a key and takes it

1.1’ even if B comes right
behind A, it will not find a
key

2. thread A exits CR and puts
the key back in place

3. thread B finds the key and
takes it, just before
entering CR

critical regionB
A

B
A

B
A

B
A

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 114

2.c Concurrency
Mutual exclusion by busy waiting

take key and run

return key

Implementation 2 — “indivisible” lock ⇔ one key
“holding” a unique object, like a
key, is an equivalent metaphor for
“test-and-set”
this is similar to the “speaker’s
baton” in some assemblies: only
one person can hold it at a time
holding is an indivisible action:
you see it and grab it in one shot
after you are done, you release
the object, so another process
can hold on to it

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 115

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 3 — no-TSL toggle for two threads
1. thread A reaches CR, finds

a lock at 0, and enters
without changing the lock

2. however, the lock has an
opposite meaning for B:
“off” means do not enter

3. only when A exits CR does
it change the lock to 1;
thread B can now enter

4. thread B sets the lock to 1
and enters CR: it will reset
it to 0 for A after exiting

critical regionB
A

B
A

B
A

B
A

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 116

2.c Concurrency
Mutual exclusion by busy waiting

test toggle

switch toggle

Implementation 3 — no-TSL toggle for two threads
the “toggle lock” is a shared
variable used for strict alternation
here, entering the critical region
means only testing the toggle: it
must be at 0 for A, and 1 for B
exiting means switching the
toggle: A sets it to 1, and B to 0

bool toggle = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

toggle = TRUE; toggle = FALSE;

while (toggle);
/* loop */

while (!toggle);
/* loop */

A’s code B’s code

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 117

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 3 — no-TSL toggle for two threads
5. thread B exits CR and

switches the lock back to 0
to allow A to enter next

5.1 but scheduling happens to
make B faster than A and
come back to the gate first

5.2 as long as A is still busy or
interrupted in its noncritical
region, B is barred access
to its CR

→ this violates item 2. of the
chart of mutual exclusion

B
A

B
A

B
A

→ this implementation avoids TSL by
splitting test & set and putting them
in enter & exit; nice try... but flawed!

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 118

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 4 — Peterson’s no-TSL, no-alternation
1. A and B each have their

own lock; an extra toggle
is also masking either lock

2. A arrives first, sets its lock,
pushes the mask to the
other lock and may enter

3. then, B also sets its lock &
pushes the mask, but must
wait until A’s lock is reset

4. A exits the CR and resets
its lock; B may now enter

critical regionB
A

B
A

B
A

B
A

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 119

2.c Concurrency
Mutual exclusion by busy waiting

set lock, push mask, and test

reset lock

Implementation 4 — Peterson’s no-TSL, no-alternation
the mask & two locks are shared
entering means: setting one’s
lock, pushing the mask and
tetsing the other’s combination
exiting means resetting the lock

bool lock[2];
int mask;
int A = 0, B = 1;
void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}
lock[A] = FALSE; lock[B] = FALSE;

lock[A] = TRUE;
mask = B;
while (lock[B] &&

mask == B);
/* loop */

lock[B] = TRUE;
mask = A;
while (lock[A] &&

mask == A);
/* loop */

A’s code B’s code

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 120

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 4 — Peterson’s no-TSL, no-alternation
1. A and B each have their

own lock; an extra toggle
is also masking either lock

2.1 A is interrupted between
setting the lock & pushing
the mask; B sets its lock

2.2 now, both A and B race to
push the mask: whoever
does it last will allow the
other one inside CR

→ mutual exclusion holds!!
(no bad race condition)

critical regionB
A

B
A

B
A

B
A

pushed last, allowing A

pushed last, allowing B

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 121

2.c Concurrency
Mutual exclusion by busy waiting

Summary of these implementations of mutual exclusion

this will be the
basis for “mutexes”

Impl. 0 — disabling hardware interrupts
NO: race condition avoided, but can crash the system!

Impl. 1 — simple lock variable (unprotected)
NO: still suffers from race condition

Impl. 2 — indivisible lock variable (TSL)
YES: works, but requires hardware

Impl. 3 — no-TSL toggle for two threads
NO: race condition avoided inside, but lockup outside

Impl. 4 — Peterson’s no-TSL, no-alternation
YES: works in software, but processing overhead

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 122

2.c Concurrency
Mutual exclusion by busy waiting

Problem?Problem: all implementations (1-4) rely on busy waiting
“busy waiting” means that the process/thread continuously
executes a tight loop until some condition changes
busy waiting is bad:

waste of CPU time — the busy process is not doing
anything useful, yet remains “Ready” instead of “Blocked”
paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority
process A, thus preventing A from exiting CR and . . .
liberating B! (B is working against its own interest)

→ we need for the waiting process to block, not keep idling

Implementation 2’ — indivisible blocking lock = mutex
a mutex is a safe lock variable with
blocking, instead of tight looping
if TSL returns 1, then voluntarily
yield the CPU to another thread

2.c Concurrency
Mutual exclusion & synchronization — mutexes

test-and-set-lock or BLOCK

set lock off

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 123

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 124

2.c Concurrency
Mutual exclusion & synchronization — mutexes

Difference between busy waiting and blocked
in busy waiting, the PC is always
looping (increment & jump back)
it can be preemptively interrupted
but will loop again tightly whenever
rescheduled → tight polling Blocked

Ready
dispatch

event wait
(block)

event occurs
(unblock)

timeout

Running

when blocked, the process’s PC
stalls after executing a “yield” call
either the process is only timed
out, thus it is “Ready” to loop-
and-yield again → sparse polling
or it is truly “Blocked” and put in
event queue → condition waiting

Running
dispatch

voluntary
event wait

(block)

event occurs
(unblock)

voluntary
timeout

Blocked

Ready

2.c Concurrency
Mutual exclusion & synchronization — mutexes

A common counter for two threads

Illustration of mutex use: shared word counter
we want to count the total number of words in 2 files
we use 1 global counter variable and 2 threads: each thread
reads from a different file and increments the shared counter

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 125

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 126

2.c Concurrency
Mutual exclusion & synchronization — mutexes

int total_words;

void main(...)
{

...declare, initialize...
pthread_create(&th1, NULL, count_words, (void *)filename1);
pthread_create(&th2, NULL, count_words, (void *)filename2);
pthread_join(th1, NULL);
pthread_join(th2, NULL);
printf("total words = %d", total_words);

}

void *count_words(void *filename)
{

...open file...
while (...get next char...) {

if (...char is not alphanum & previous char is alphanum...) {
total_words++;

}
...... total_words = total_words + 1;

is not necessarily atomic! (depends on
machine code and stage of execution)

Multithreaded shared counter with possible race condition

2.c Concurrency
Mutual exclusion & synchronization — mutexes

Two threads race to increment the counter

A race condition can occur when incrementing counter
if not atomic, the increment block of thread 1, “get1-add1” may
be interleaved with the increment block of thread 2, “get2-add2”
to produce “get1-get2-add1-add2” or “get1-get2-add2-add1”

→ this results in missing one count

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 127

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 128

2.c Concurrency
Mutual exclusion & synchronization — mutexes

protect the critical region
with mutual exclusion

int total_words;
pthread_mutex_t counter_lock = PTHREAD_MUTEX_INITIALIZER;

void main(int ac, char *av[])
{

...declare, initialize...
pthread_create(&th1, NULL, count_words, (void *)filename1);
pthread_create(&th2, NULL, count_words, (void *)filename2);
pthread_join(th1, NULL);
pthread_join(th2, NULL);
printf("total words = %d", total_words);

}

void *count_words(void *filename)
{

...open file...
while (...get next char...) {

if (...char is not alphanum & previous char is alphanum...) {
pthread_mutex_lock(&counter_lock);
total_words++;
pthread_mutex_unlock(&counter_lock);

}
......

Mulithreaded shared counter with mutex protection

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 129

2.c Concurrency
Mutual exclusion & synchronization — mutexes

System calls for thread exclusion with mutexes
err = pthread_mutex_lock(pthread_mutex_t *m)

locks the specified mutex
if the mutex is unlocked, it becomes locked and owned
by the calling thread
if the mutex is already locked by another thread, the
calling thread is blocked until the mutex is unlocked

err = pthread_mutex_unlock(pthread_mutex_t *m)

releases the lock on the specified mutex
if there are threads blocked on the specified mutex, one
of them will acquire the lock to the mutex

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 130

2.c Concurrency
Mutual exclusion & synchronization — mutexes

Real-world mutex use: the producer/consumer problem
producer — generates data items and places them in a buffer
consumer — takes the items out of the buffer to use them

consumer
producer

example 1: a print program produces characters that are
consumed by a printer
example 2: an assembler produces object modules that are
consumed by a loader

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 131

2.c Concurrency
Mutual exclusion & synchronization — mutexes

Unbounded buffer, 1 producer, 1 consumer
in modified only by producer and out only by consumer
no race condition; no need for mutexes, just a while loop

void consumer()
{
while (true) {

while (out == in);

item = b[out];
out++;

consume(item);
}

}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;

}
}

item[] b;
int in, out;

