2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock variable

1. thread Areaches CRand A ﬂ% P
finds the lock at 0 and sets BNWK\ ; criticalregion
It In one shot, then enters

1.1"even if B comes right A
behind A, it will find that B X
the lock is already at 1 Q)

2. thread A exits CR, then A

resets lock to 0 B WMT

gk
3. thread B finds the lock at0 A
and sets it to 1 in one shot, B/vvvvwxﬂ‘
just before entering CR

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 111

2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock variable

v the indivisibility of the “test-lock-

N .
and-set-lock” operation can be void echoQ)
Implemented with the hardware {
instruction TSL char chin, chout;
__ do {
enter_region: [Tiaetand.catlanl
TSLREGISTER LOCK | copy lock to registe set lock to 1 . I?.S'Ez_a_rIQ'_SiQt_ l_O_C_k_ _____________
CMP REGISTER#0 | was lock zero? ; chin = getchar();
JNE enter_region | if it was non zero, lock was set, so loop / — = -
RET | return to caller; cntical region entered /I chout chin it
-- ‘ putchar(chout);
"""" setlockoff
" Tleave_region T f| while (...);
MOVE LOCK #0 |store a0inlock S}
RET | return to caller !
2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 112

2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock <> one key ©

1. thread Areaches CRand A ﬁ I
finds akey and takesit B~ e

1.1’ even if B comes right A M
behind A, itwill notfinda B X

2. thread A exits CR and puts ANW\N\NJ R
the key back in place BWMT

3. thread B finds the key and A :
takes it, just before vavvvw»ﬂ‘j
entering CR

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 113

2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock <> one key ©
v" “holding” a unigue object, like a

key, is an equivalent metaphor for [\oid echo(
“test-and-set” {

v’ this is similar to the “speaker’s 3';""2 chin. chout:
baton” in some assemblies: only """ fake keyandwn
one person can hold it at a time chin = getchar();

chout = chin;

v holding is an indivisible action: putchar(chout);
you see it and grab it in one shot ______:_;:f‘?_t__‘frf‘__fz_é_g’____:::::::

v after you are done, you release while (...);
the object, so another process ¥

can hold on to it

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 114

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 3 — no-TSL toggle for '[Véo threads
1. thread A reaches CR, finds A .

R

: critical region

a lock at 0, and enters B/vvvx\
without changing the lock)
2. however, the lock hasan A R
opposite meaning for B: B -
“off” means do not enter %)
3. only when A exits CR does A R

it change the lock to 1; B/vwvmln'!

thread B can now enter

4. thread B setsthe locktol A
and enters CR: it will reset B
It to O for A after exiting

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 115

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 3 — no-TSL toggle for two threads

v the “toggle lock” is a shared
variable used for strict alternation

v here, entering the critical region
means only testing the toggle: it
must be at 0 for A, and 1 for B

v exiting means switching the

A’s code B's code

1 1
__________________________ O
1

whille (toggle); . while ('toggle);

2/21/2006

toggle: Asetsitto 1, and Bto 0/

bool toggle = FALSE;

void echo()
{

char chin, chout;

chin = getchar();
chout = chin;
putchar(chout);

CS 446/646 - Principles of Operating Systems - 2. Processes

116

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 3 — re-FSkteggle fortwo-threads—®

@ . @

5. thread B exits CR and A :
switches the lock backto 0 B :
to allow A to enter next @

5.1 but scheduling happensto A
make B faster than A and BNWK\
come back to the gate first

5.2 aslong as A s still busy or A
Interrupted in its noncritical B
region, B is barred access

to its CR —> this implementation avoids TSL by
— this violates item 2. of the splitting test & set and putting them
chart of mutual exclusion In enter & exit; nice try... but flawed!

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 117

2.c Concurrency
Mutual exclusion by busy waiting

» |Implementation 4 — Peterson’s no-TSL, no- alternatlon

@ % I
1. AandB each have their A R
own lock; an extra toggle BNWK\

g critical region
is also masking either lock vawj%vvvv\
2. Aarrives first, sets its lock, A R
pushes the mask to the B/vvvx\ i
other lock and may enter

3. then, B also sets its lock & A
pushes the mask, but must B
walit until A’s lock Is reset A

4. Aexits the CR and resets AMMN""?@?WV\R

Its lock; B may now enter K\

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 118

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 4 — Peterson’s no-TSL, no-alternation

v’ the mask & two locks are shared

v' entering means: setting one’s
lock, pushing the mask and
tetsing the other’'s combination

v exiting means resetting the lock

A’s code B's code
lock[A] = TRUE; . lock[B] = TRUE;
mask = B; E mask = A;
whille (lock[B] && i while (lock[A] && .
mask == B); | mask == A); / /
/* loop */ . /* loop */

bool lock[2];
INnt mask;

void echo()
{

char chin, chout;

chin = getchar();
chout = chin;
putchar(chout);

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 119

2.c Concurrency
Mutual exclusion by busy waiting

» |Implementation 4 — Peterson’s no-TSL, no- alternatloné»

@ % I
1. Aand B each have their A R - o
. o o critical region
own lock; an extra toggle BN\NR : :
IS also masking either lock

2.1 A'is interrupted between A
setting the lock & pushing B

the mask; B sets its lock

2.2 now, bothAand Braceto A
push the mask: whoever B
does it last will allow the
other one inside CR P\ pusedfast alomne ® ml.

—> mutual exclusion holds!! B “
(no bad race condition)

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 120

pushed last, allowing A

2.c Concurrency
Mutual exclusion by busy waiting

» Summary of these implementations of mutual exclusion

v Impl. 0 — disabling hardware interrupts
% NO: race condition avoided, but can crash the system!
v Impl. 1 — simple lock variable (unprotected)
___________ % __NO:stil suffers from race condition
v Impl. 2 — indivisible lock variable (TSL) this will be the 1
b YES:works, but requires hardware %90 0r mueres”
v Impl. 3 —no-TSL toggle for two threads
% NO: race condition avoided inside, but lockup outside
v Impl. 4 — Peterson’s no-TSL, no-alternation

= YES: works in software, but processing overhead

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 121

2.c Concurrency
Mutual exclusion by busy waiting

» Problem: all implementations (1-4) rely on busy waiting

v" “pusy waiting” means that the process/thread continuously
executes a tight loop until some condition changes

v" busy waiting is bad:
= waste of CPU time — the busy process is not doing
anything useful, yet remains “Ready” instead of “Blocked”
= paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority

process A, thus preventing A from exiting CR and . . .
liberating B! (B Is working against its own interest)

— we need for the waiting process to block, not keep idling

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 122

2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Implementation 2’ — indivisible blocking lock = mutex
v amutex is a safe lock variable with

blocking, instead of tight looping

v if TSL returns 1, then voluntarily
yield the CPU to another thread
Tmutex_lock: T TTTTTTTTTTTTTTTTTTTTTT
TSL REGISTER MUTEX | copy mutex to register and set mutex to 1 /
CMP REGISTER #0 | was mutex zero? /
JZE ok | If it was zero, mutex was unlocked, so refun,
“CALL thread _vield | mutex is busy; schedule another thread /
WP mitex_lock |ty again later ;o
ok: RET | return to caller; critical region entered » /
""" mutex_unlock:
MOVE MUTEX #0 | store a 0 in mutex ,’I
RET | return to caller '

void echo()
{

char chin, chout;

chin = getchar();
chout = chin;
putchar(chout);

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 123

2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Difference between busy waliting and blocked

v"in busy waiting, the PC is always Ready

looping (increment & jump back)

v' it can be preemptively interrupted
but will loop again tightly whenever
rescheduled — tight polling

v" when blocked, the process’s PC
stalls after executing a “yield” call = .

Blocked

voluntary
event wait
(block)

v" either the process is only timed i
out, thus it is “Ready” to loop-
and-yield again — sparse polling
o 1]] :
v'oritis truly “Blocked” and put in
event queue — condition waiting
2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 124

2.c Concurrency
Mutual exclusion & synchronization — mutexes

> lllustration of mutex use: shared word counter
v' we want to count the total number of words in 2 files

v we use 1 global counter variable and 2 threads: each thread
reads from a different file and increments the shared counter

| __- ONE process
_— One counter

two threads

A common counter for two threads

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 125

2.c Concurrency
Mutual exclusion & synchronization — mutexes

int total words;

void main(...)

{
- . -declare, initialize.. . .
pthread create(&thl, NULL, count_words, (void *)filenamel);
pthread create(&th2, NULL, count_words, (void *)filename2);
pthread join(thl, NULL);
pthread join(th2, NULL);
printf(*"total words = %d", total words);

¥

void *count_words(void *filename)

{

...openfile. ..
while (...getnextchar...) {
1T (...charis not alphanum & previous char is alphanum...) {
total words++;

} \
...... total words = total words + 1;

IS not necessarily atomic! (depends on
machine code and stage of execution)

Multithreaded shared counter with possible race condition

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes

126

2.c Concurrency
Mutual exclusion & synchronization — mutexes

» A race condition can occur when incrementing counter

v"if not atomic, the increment block of thread 1, “getl-add1” may
be interleaved with the increment block of thread 2, “get2-add2”
to produce “getl-get2-add1-add2” or “getl-get2-add2-addl”

— this results in missing one count

time
Thread 1 Thread 2

Two threads race to increment the counter

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 127

2.c Concurrency
Mutual exclusion & synchronization — mutexes

int total words;
pthread mutex t counter_lock = PTHREAD MUTEX INITIALIZER;

void main(int ac, char *av[])

{
. . .declare, initialize. . .
pthread create(&thl, NULL, count _words, (void *)filenamel);
pthread create(&th2, NULL, count_words, (void *)filename2);
pthread join(thl, NULL);
pthread join(th2, NULL);
printf(*"total words = %d', total _words);

s

zoid *count_words(void *filename) pﬂﬁedihecxmcmregmn

.. _openfile. .. with mutual exclusion
while (...getnextchar...) {

1T (...charis not alphanum & previous char is alphanum...) {

Mulithreaded shared counter with mutex protection

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 128

2.c Concurrency
Mutual exclusion & synchronization — mutexes

» System calls for thread exclusion with mutexes
v err = pthread mutex lock(pthread mutex_ t *m)

locks the specified mutex

= |f the mutex Is unlocked, it becomes locked and owned
by the calling thread

= |f the mutex is already locked by another thread, the
calling thread is blocked until the mutex is unlocked

v err = pthread mutex unlock(pthread mutex_t *m)
releases the lock on the specified mutex

= |fthere are threads blocked on the specified mutex, one
of them will acquire the lock to the mutex

2/21/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 129

2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Real-world mutex use: the producer/consumer problem

v
v

v

2/21/2006

producer — generates data items and places them in a buffer
consumer — takes the items out of the buffer to use them

example 1: a print program produces characters that are
consumed by a printer

example 2: an assembler produces object modules that are
consumed by a loader

7 : producer
consumer

CS 446/646 - Principles of Operating Systems - 2. Processes 130

2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Unbounded buffer, 1 producer, 1 consumer
v 1n modified only by producer and out only by consumer

v" no race condition; no need for mutexes, just a while loop

item[] b;

b[1] | b[2]

b[3]

b[4]

b[5]

int In, out;

7y

7y

{

INn++;
ks
s

void producer()

while (true) {
item = produce();

b[in] = i1tem;

2/21/2006

void consumer()

{
while (true) {

while (out == 1In);

item = bJout];
out++;

consume(item);

}
}

CS 446/646 - Principles of Operating Systems - 2. Processes

131

