
2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 88

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency
9 Types of process interaction
9 Race conditions & critical regions
9 Mutual exclusion by busy waiting
9 Mutual exclusion & synchronization

� mutexes
� semaphores
� monitors
� message passing

d. Deadlocks

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 89

2.c Concurrency
Types of process interaction

¾ Concurrency refers to any form of interaction among
processes or threads
9 concurrency is a fundamental part of O/S design
9 concurrency includes

� communication among processes/threads
� sharing of, and competition for system resources
� cooperative processing of shared data
� synchronization of process/thread activities
� organized CPU scheduling
� solving deadlock and starvation problems

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 90

2.c Concurrency
Types of process interaction

¾ Concurrency arises in the same way at different levels
of execution streams
9 multiprogramming — interaction between multiple processes

running on one CPU (pseudoparallelism)
9 multithreading — interaction between multiple threads

running in one process
9 multiprocessors — interaction between multiple CPUs

running multiple processes/threads (real parallelism)
9 multicomputers — interaction between multiple computers

running distributed processes/threads
→ the principles of concurrency are basically the same in all of

these categories (possible differences will be pointed out)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 91

2.c Concurrency
Types of process interaction

9 processes unaware of each other
— they must use shared resources
independently, without interfering,
and leave them intact for the others

P1 P2

resource

9 processes indirectly aware of each
other — they work on common data
and build some result together via
the data (“stigmergy” in biology)

P2P1

data

9 processes directly aware of each
other — they cooperate by
communicating, e.g., exchanging
messages

P2P1

messages

¾ Whether processes or threads: three basic interactions

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 92

2.c Concurrency
Race conditions & critical regions

Multithreaded shopping diagram and possible outputs

> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

¾ Inconsequential race condition in the shopping scenario
9 there is a “race condition” if the outcome depends on the order of

the execution

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 93

2.c Concurrency
Race conditions & critical regions

CPU

CPU

¾ Inconsequential race condition in the shopping scenario
9 the outcome depends on the CPU scheduling or “interleaving” of

the threads (separately, each thread always does the same thing)
> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

A

B

sa
la
d

ap
pl
es

mi
lk

bu
tt
er

ch
ee
se

> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>

A sa
la
d

ap
pl
es

B
mi
lk

bu
tt
er

ch
ee
se

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 94

2.c Concurrency
Race conditions & critical regions

¾ Inconsequential race condition in the shopping scenario
9 the CPU switches from one process/thread to another, possibly

on the basis of a preemptive clock mechanism
> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

A

B

sa
la
d

ap
pl
es

mi
lk

bu
tt
er

ch
ee
se

CPU

thread A

thread B

salad

milk

apples

butter cheese

Thread view expanded in real execution time

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 95

2.c Concurrency
Race conditions & critical regions

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

> ./echo
Hello world!
Hello world!

Single-threaded echo Multithreaded echo (lucky)

> ./echo
Hello world!
Hello world!

1
2
3

4
5
6

lucky
CPU

scheduling

☺

¾ Consequential race conditions in I/O & variable sharing

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 96

2.c Concurrency
Race conditions & critical regions

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

¾ Consequential race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

/

Multithreaded echo (unlucky)

> ./echo
Hello world!
ee....

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 97

2.c Concurrency
Race conditions & critical regions

void echo()
{
char chin, chout;

do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

void echo()
{
char chin, chout;

do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

¾ Consequential race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

/

Multithreaded echo (unlucky)

> ./echo
Hello world!
eH....

changed
to local

variables

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 98

2.c Concurrency
Race conditions & critical regions

¾ Consequential race conditions in I/O & variable sharing
9 note that, in this case, replacing the global variables with local

variables did not solve the problem
9 we actually had two race conditions here:

� one race condition in the shared variables and the order of
value assignment

� another race condition in the shared output stream: which
thread is going to write to output first (this race persisted
even after making the variables local to each thread)

→ generally, problematic race conditions may occur whenever
resources and/or data are shared (by processes unaware of
each other or processes indirectly aware of each other)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 99

2.c Concurrency
Race conditions & critical regions

¾ How to avoid race conditions?
9 find a way to keep the instructions together
9 this means actually. . . reverting from too much interleaving

and going back to “indivisible” blocks of execution!!

thread A

thread B

chin='H'

chin='e'

putchar('e')

chout='e' putchar('e')

(a) too much interleaving may create race conditions

(b) keeping “indivisible” blocks of execution avoids race conditions

thread A

thread B

chin='H'

chin='e'

putchar('H')

chout='e' putchar('e')

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 100

2.c Concurrency
Race conditions & critical regions

¾ The “indivisible” execution blocks are critical regions
9 a critical region is a section of code that may be executed by

only one process or thread at a time

B
A

common critical region

B
A A’s critical region

B’s critical region

9 although it is not necessarily the same region of memory or
section of program in both processes

→ but physically different or not, what matters is that these regions
cannot be interleaved or executed in parallel (pseudo or real)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 101

2.c Concurrency
Race conditions & critical regions

¾ We need mutual exclusion from critical regions

enter critical region?

exit critical region

enter critical region?

exit critical region

9 critical regions can be protected from concurrent access by
padding them with entrance and exit gates (we’ll see how later):
a thread must try to check in, then it must check out

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

BA

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 102

2.c Concurrency
Race conditions & critical regions

Chart of mutual exclusion

1. mutual exclusion inside — only one
process at a time may be allowed in a
critical region

2. no exclusion outside — a process stalled
in a noncritical region may not exclude
other processes from their critical regions

3. no indefinite occupation — a critical
region may be only occupied for a finite
amount of time

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 103

2.c Concurrency
Race conditions & critical regions

Chart of mutual exclusion (cont’d)

4. no indefinite delay when barred — a
process may be only excluded for a finite
amount of time (no deadlock or starvation)

5. no delay when about to enter — a critical
region free of access may be entered
immediately by a process

6. nondeterministic scheduling — no
assumption should be made about the
relative speeds of processes

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 104

2.c Concurrency
Mutual exclusion by busy waiting

critical region
1. thread A reaches the gate

to the critical region (CR)
before B

2. thread A enters CR first,
preventing B from entering
(B is waiting or is blocked)

3. thread A exits CR; thread
B can now enter

4. thread B enters CR

¾ Desired effect: mutual exclusion from the critical region

B
A

B
A

B
A

B
A

H
O

W
 is

 th
is

ac
hi

ev
ed

??

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 105

2.c Concurrency
Mutual exclusion by busy waiting

¾ Implementation 0 — disabling hardware interrupts

critical region

B

1. thread A reaches the gate
to the critical region (CR)
before B

2. as soon as A enters CR, it
disables all interrupts, thus
B cannot be scheduled

3. as soon as A exits CR, it
reenables interrupts; B can
be scheduled again

4. thread B enters CR

B
A

B
A

A

B
A

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 106

2.c Concurrency
Mutual exclusion by busy waiting

¾ Implementation 0 — disabling hardware interrupts '
9 it works, but is foolish
9 what guarantees that the user

process is going to ever exit the
critical region?

9 meawhile, the CPU cannot
interleave any other task, even
unrelated to this race condition

9 the critical region becomes one
physically indivisible block, not
logically

9 also, this is not working in multi-
processors

disable hardware interrupts

reenable hardware interrupts

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 107

2.c Concurrency
Mutual exclusion by busy waiting

¾ Implementation 1 — simple lock variable

critical region
1. thread A reaches CR and

finds a lock at 0, which
means that A can enter

2. thread A sets the lock to 1
and enters CR, which
prevents B from entering

3. thread A exits CR and
resets lock to 0; thread B
can now enter

4. thread B sets the lock to 1
and enters CR

B
A

B
A

B
A

B
A

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 108

2.c Concurrency
Mutual exclusion by busy waiting

test lock, then set lock

reset lock

¾ Implementation 1 — simple lock variable
9 the “lock” is a shared variable
9 entering the critical region means

testing and then setting the lock
9 exiting means resetting the lock

bool lock = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

while (lock);
/* do nothing: loop */

lock = TRUE;

lock = FALSE;

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 109

2.c Concurrency
Mutual exclusion by busy waiting

¾ Implementation 1 — simple lock variable '
1. thread A reaches CR and

finds a lock at 0, which
means that A can enter

1.1 but before A can set the
lock to 1, B reaches CR
and finds the lock is 0, too

1.2 A sets the lock to 1 and
enters CR but cannot
prevent the fact that . . .

1.3 . . . B is going to set the
lock to 1 and enter CR, too

critical regionB
A

B
A

B
A

B
A

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 110

2.c Concurrency
Mutual exclusion by busy waiting

test lock, then set lock

reset lock

¾ Implementation 1 — simple lock variable '
9 suffers from the very flaw we

want to avoid: a race condition
9 the problem comes from the small

gap between testing that the lock
is off and setting the lock
while (lock); lock = TRUE;

9 it may happen that the other
thread gets scheduled exactly
inbetween these two actions (falls
in the gap)

9 so they both find the lock off and
then they both set it and enter

bool lock = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

