Principles of Operating Systems
CS 446/646

2. Processes

c. Concurrency

v Types of process interaction

v" Race conditions & critical regions
v Mutual exclusion by busy waiting
v Mutual exclusion & synchronization

= mutexes

= semaphores

= monitors

" message passing
d. Deadlocks

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes

2.c Concurrency
Types of process interaction

» Concurrency refers to any form of interaction among
processes or threads

v"concurrency is a fundamental part of O/S design
v"concurrency includes

2/16/2006

communication among processes/threads
sharing of, and competition for system resources
cooperative processing of shared data
synchronization of process/thread activities
organized CPU scheduling

solving deadlock and starvation problems

CS 446/646 - Principles of Operating Systems - 2. Processes 89

2.c Concurrency
Types of process interaction

» Concurrency arises in the same way at different levels
of execution streams

v multiprogramming — interaction between multiple processes
running on one CPU (pseudoparallelism)

v multithreading — interaction between multiple threads
running in one process

v multiprocessors — interaction between multiple CPUs
running multiple processes/threads (real parallelism)

v multicomputers — interaction between multiple computers
running distributed processes/threads

— the principles of concurrency are basically the same in all of
these categories (possible differences will be pointed out)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 20

2.c Concurrency
Types of process interaction

» Whether processes or threads: three basic interactions

v’ processes unaware of each other

— they must use shared resources il
independently, without interfering, Hh
and leave them intact for the others @J resource

v' processes indirectly aware of each

other — they work on common data
and build some result together via
the data (“stigmergy” in biology)

,I

v' processes directly aware of each
other — they cooperate by
communicating, e.g., exchanging
messages

mesSsages
2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 91

2.c Concurrency
Race conditions & critical regions

» Inconsequential race condition in the shopping scenario
v’ there is a “race condition” if the outcome depends on the order of

the exeCUtIOn original thread
main () x//

i i Ry
i i i, e,

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

new threads

> _/multi_shopping > _/multi_shopping

Multithreaded shopping diagram and possible outputs

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 92

2.c Concurrency
Race conditions & critical regions

» Inconsequential race condition in the shopping scenario

v"the outcome depends on the CPU scheduling or “interleaving” of
the threads (separately, each thread always does the same thing)

-/multi_shopping

-/multi_shopping

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 93

2.c Concurrency
Race conditions & critical regions

» Inconsequential race condition in the shopping scenario

v"the CPU switches from one process/thread to another, possibly
on the basis of a preemptive clock mechanism

S
- 63\66 e&’Q\e A

grabbing the salad... A : _ R
grabbing the milk... T cpu AT a4
grabbing the apples... -7’ P P o
grabbing the butter.. .-"" Br’ 14 R

rabbing the cheese:’.. /
g g i °& ((\,‘\\& \O\)’C‘e(O\(\eee,e II,

lad |)
i1k butt h /

Thread view expanded in real execution time

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 94

2.c Concurrency
Race conditions & critical regions

» Consequential race conditions in I/O & variable sharing

char chin, chout;

void echo()
{
do {
1 chin = getchar();
2 chout = chin;
3 putchar(chout);
by
while (...);

}

Hello world!

Single-threaded echo

2/16/2006

scheduling

©

char chin, chout;

void echo()

{
do {
4 chin = getchar(Q);
5 chout = chin;
6 putchar(chout);
by
while (...);
+

Hello world!

Multithreaded echo (lucky)

CS 446/646 - Principles of Operating Systems - 2. Processes

95

2.c Concurrency
Race conditions & critical regions

» Consequential race conditions in I/O & variable sharing

char chin, chout;

void echo()
{
do {
1 chin = getchar();
5 chout = chin;
6 putchar(chout);
by
while (...);

}

Hello world!

Single-threaded echo

2/16/2006

CPU
scheduling

®

unlucky |

char chin, chout;

void echo()
{
do {
2 chin = getchar();
3 chout = chin;
4 putchar(chout);

by
while (...);

}

Multithreaded echo (unlucky)

CS 446/646 - Principles of Operating Systems - 2. Processes

96

2.c Concurrency
Race conditions & critical regions

» Consequential race conditions in I/O & variable sharing

void echo() void echo()
changed {) {)
to local—+—> char chin, chout; A B char chin, chout;
variables
do { do {

1 chin = getchar(); (|- » 2 chin = getchar();
5 chout = chin; ™ 3 chout = chin;

6 putchar(chout); 4 putchar(chout);

} _ unlucky ’ 1 _
while (...); CPU while (...);
} scheduling }

®

Hello world! E;ﬁ@,..

Single-threaded echo Multithreaded echo (unlucky)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 97

2.c Concurrency
Race conditions & critical regions

» Consequential race conditions in I/O & variable sharing

v"note that, in this case, replacing the global variables with local
variables did not solve the problem

v"we actually had two race conditions here:

= one race condition in the shared variables and the order of
value assignment

= another race condition in the shared output stream: which
thread Is going to write to output first (this race persisted
even after making the variables local to each thread)

— generally, problematic race conditions may occur whenever
resources and/or data are shared (by processes unaware of
each other or processes indirectly aware of each other)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 98

2.c Concurrency
Race conditions & critical regions

» How to avoid race conditions?
v" find a way to keep the instructions together
v" this means actually. . . reverting from too much interleaving

and going back to “indivisible” blocks of execution!!

chin="e" |chout="e" putchar %«

(a) too much interleaving may create race conditions

| |
Il chin="H" |putchar I
||/\/\/\/\|/p\xvv(\§®\/)\||
| |
|
|
|

il chin="e" |[chout="¢e" putchar()
I
|

(b) keeping “indivisible” blocks of execution avoids race conditions

2/16/2006

CS 446/646 - Principles of Operating Systems - 2. Processes

thread A

thread B

thread A

thread B

99

2.c Concurrency
Race conditions & critical regions

> The “indivisible” execution blocks are critical regions

v'acritical region is a section of code that may be executed by
only one process or thread at a time

A R N
. : common critical region
B —

v"although it is not necessarily the same region of memory or
section of program in both processes

A R . A'S ?rltlcal region

: ,B’s critical region

— but physically different or not, what matters is that these regions
cannot be interleaved or executed in parallel (pseudo or real)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 100

2.c Concurrency
Race conditions & critical regions

» We need mutual exclusion from critical regions

v" critical regions can be protected from concurrent access by
padding them with entrance and exit gates (we’ll see how later):
a thread must try to check in, then it must check out

void echo() void echo()
{ {
char chin, chout; A B char chin, chout;
do{ . gdo{ ________________________
_________ enter critical region?)| w enter critical region?
chin = getchar(); chin = getchar();
chout = chin; o chout = chin;
putchar(chout); IR putchar(chout);
_____ exitcriticalregion . Exitcnticalregion
} }
while () while ()
¥ ¥

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 101

2.c Concurrency
Race conditions & critical regions

a\art of mutual exclusion

1. mutual exclusion inside — only one
process at a time may be allowed in a
critical region

2. no exclusion outside — a process stalled
In a noncritical region may not exclude
other processes from their critical regions

3. no indefinite occupation — a critical
region may be only occupied for a finite
amount of time

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 102

2.c Concurrency
Race conditions & critical regions

a\art of mutual exclusion (cont’d

4. no indefinite delay when barred — a
process may be only excluded for a finite
amount of time (no deadlock or starvation)

5. no delay when about to enter — a critical
region free of access may be entered
Immediately by a process

6. nondeterministic scheduling — no
assumption should be made about the
relative speeds of processes

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 103

HOW is this

2.c Concurrency
Mutual exclusion by busy waiting

» Desired effect: mutual exclusion from the critical region

achieved??

N

2/16/2006

1.

thread A reaches the gate
to the critical region (CR)
before B

thread A enters CR first,
preventing B from entering
(B Is waiting or is blocked)

thread A exits CR; thread
B can now enter

thread B enters CR

Q’VWR. R critical region
A R
B o}

A :

CS 446/646 - Principles of Operating Systems - 2. Processes 104

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 0 — disabling hardware interrupts

R

i critical region

1. thread A reaches the gate A
to the critical region (CR) BNWK\
before B

2. assoonasAentersCR, it A
disables all interrupts, thus
B cannot be scheduled

3. assoonasAexits CR,it A
reenables interrupts; B can B/vvvxx'\
be scheduled again

4. thread B enters CR A

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 105

2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 0 —-gisabling-hardware-thterrupts

v" it works, but is foolish

v" what guarantees that the user void echo()
rocess is going to ever exitthe | {
p.. .g J char chin, chout;
critical region? do {

v' meawhile, the CPU cannot |_______disable hardware interrupts __|
. ! chin = getchar();
interleave any other task, even e = i
unrelated to this race condition putchar(chout);

.. T réénablé Hardware interipts ™

v’ the critical region becomes one [Y
physically indivisible block, not while (...);
logically ¥

v also, this is not working in multi-

Processors

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 106

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 — simple lock variable

1.

2/16/2006

thread A reaches CRand A

oy

£

finds a lock at 0, which BN\NK | Gl Egen
means that A can enter)
thread A sets the lockto 1 A R

and enters CR, which B - E
prevents B from entering @ | _
thread A exits CR and A R

resets lock to 0: thread B B/vmxqulf

can now enter

thread B sets the lockto 1 A

and enters CR

B

CS 446/646 - Principles of Operating Systems - 2. Processes 107

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 — simple lock variable

v’ the “lock” is a shared variable

v entering the critical region means
testing and then setting the lock

v" exiting means resetting the lock

__

while (lock);

/* do nothing: loop */ /

lock = TRUE;

__

bool lock = FALSE;

void echo()
{

char chin, chout;

chin = getchar();
chout = chin;
putchar(chout);

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 108

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 — %lmpleﬂleelevaﬂablre@

1. thread A reaches CRand A R e
finds a lock at 0, which BNWR critical region;
means that A can enter @

1.1 but before A can setthe A ﬂ
lockto 1, BreachesCR B R
and finds the lock is 0, too ;@g

1.2 Asetsthe locktoland A R
enters CR but cannot B ﬂ‘

prevent the fact that . . .
1.3 ...Bis going to set the

2/16/2006

lock to 1 and enter CR, too B) ‘

CS 446/646 - Principles of Operating Systems - 2. Processes 109

2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 —stmplelock-variable- ¢

v’ suffers from the very flaw we bool lock = FALSE;

want to avoid: a race condition void echo()
v’ the problem comes from the small | { _
. char chin, chout;
gap between testing that the lock do {
is off and setting the lock .__testlock, thensetlock |
‘while (lock); lock = TRUE; |/ EALEY = QR nOn
T e v chout = chin;
v it may happen that the other putchar(chout);
"""" réseffock ™~~~

thread gets scheduled exactly | oooo TEEt et
inbetween these two actions (falls while (...);
In the gap) }

v" 50 they both find the lock off and
then they both set it and enter

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 110

