
2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 88

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency
Types of process interaction
Race conditions & critical regions
Mutual exclusion by busy waiting
Mutual exclusion & synchronization

mutexes
semaphores
monitors
message passing

d. Deadlocks

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 89

2.c Concurrency
Types of process interaction

Concurrency refers to any form of interaction among
processes or threads

concurrency is a fundamental part of O/S design
concurrency includes

communication among processes/threads
sharing of, and competition for system resources
cooperative processing of shared data
synchronization of process/thread activities
organized CPU scheduling
solving deadlock and starvation problems

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 90

2.c Concurrency
Types of process interaction

Concurrency arises in the same way at different levels
of execution streams

multiprogramming — interaction between multiple processes
running on one CPU (pseudoparallelism)
multithreading — interaction between multiple threads
running in one process
multiprocessors — interaction between multiple CPUs
running multiple processes/threads (real parallelism)
multicomputers — interaction between multiple computers
running distributed processes/threads

→ the principles of concurrency are basically the same in all of
these categories (possible differences will be pointed out)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 91

2.c Concurrency
Types of process interaction

processes unaware of each other
— they must use shared resources
independently, without interfering,
and leave them intact for the others

P1 P2

resource

processes indirectly aware of each
other — they work on common data
and build some result together via
the data (“stigmergy” in biology)

P2P1

data

processes directly aware of each
other — they cooperate by
communicating, e.g., exchanging
messages

P2P1

messages

Whether processes or threads: three basic interactions

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 92

2.c Concurrency
Race conditions & critical regions

Multithreaded shopping diagram and possible outputs

> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

Inconsequential race condition in the shopping scenario
there is a “race condition” if the outcome depends on the order of
the execution

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 93

2.c Concurrency
Race conditions & critical regions

CPU

CPU

Inconsequential race condition in the shopping scenario
the outcome depends on the CPU scheduling or “interleaving” of
the threads (separately, each thread always does the same thing)

> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

A

B

sa
la
d

ap
pl
es

mi
lk

bu
tt
er

ch
ee
se

> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>

A sa
la
d

ap
pl
es

B
mi
lk

bu
tt
er

ch
ee
se

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 94

2.c Concurrency
Race conditions & critical regions

Inconsequential race condition in the shopping scenario
the CPU switches from one process/thread to another, possibly
on the basis of a preemptive clock mechanism

> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

A

B

sa
la
d

ap
pl
es

mi
lk

bu
tt
er

ch
ee
se

CPU

thread A

thread B

salad

milk

apples

butter cheese

Thread view expanded in real execution time

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 95

2.c Concurrency
Race conditions & critical regions

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

> ./echo
Hello world!
Hello world!

Single-threaded echo Multithreaded echo (lucky)

> ./echo
Hello world!
Hello world!

1
2
3

4
5
6

lucky
CPU

scheduling

☺

Consequential race conditions in I/O & variable sharing

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 96

2.c Concurrency
Race conditions & critical regions

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

Consequential race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

Multithreaded echo (unlucky)

> ./echo
Hello world!
ee....

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 97

2.c Concurrency
Race conditions & critical regions

void echo()
{
char chin, chout;

do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

void echo()
{
char chin, chout;

do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

Consequential race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

Multithreaded echo (unlucky)

> ./echo
Hello world!
eH....

changed
to local

variables

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 98

2.c Concurrency
Race conditions & critical regions

Consequential race conditions in I/O & variable sharing
note that, in this case, replacing the global variables with local
variables did not solve the problem
we actually had two race conditions here:

one race condition in the shared variables and the order of
value assignment
another race condition in the shared output stream: which
thread is going to write to output first (this race persisted
even after making the variables local to each thread)

→ generally, problematic race conditions may occur whenever
resources and/or data are shared (by processes unaware of
each other or processes indirectly aware of each other)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 99

2.c Concurrency
Race conditions & critical regions

How to avoid race conditions?
find a way to keep the instructions together
this means actually. . . reverting from too much interleaving
and going back to “indivisible” blocks of execution!!

thread A

thread B

chin='H'

chin='e'

putchar('e')

chout='e' putchar('e')

(a) too much interleaving may create race conditions

(b) keeping “indivisible” blocks of execution avoids race conditions

thread A

thread B

chin='H'

chin='e'

putchar('H')

chout='e' putchar('e')

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 100

2.c Concurrency
Race conditions & critical regions

The “indivisible” execution blocks are critical regions
a critical region is a section of code that may be executed by
only one process or thread at a time

B
A

common critical region

B
A A’s critical region

B’s critical region

although it is not necessarily the same region of memory or
section of program in both processes

→ but physically different or not, what matters is that these regions
cannot be interleaved or executed in parallel (pseudo or real)

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 101

2.c Concurrency
Race conditions & critical regions

We need mutual exclusion from critical regions

enter critical region?

exit critical region

enter critical region?

exit critical region

critical regions can be protected from concurrent access by
padding them with entrance and exit gates (we’ll see how later):
a thread must try to check in, then it must check out

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

BA

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 102

2.c Concurrency
Race conditions & critical regions

Chart of mutual exclusion

1. mutual exclusion inside — only one
process at a time may be allowed in a
critical region

2. no exclusion outside — a process stalled
in a noncritical region may not exclude
other processes from their critical regions

3. no indefinite occupation — a critical
region may be only occupied for a finite
amount of time

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 103

2.c Concurrency
Race conditions & critical regions

Chart of mutual exclusion (cont’d)

4. no indefinite delay when barred — a
process may be only excluded for a finite
amount of time (no deadlock or starvation)

5. no delay when about to enter — a critical
region free of access may be entered
immediately by a process

6. nondeterministic scheduling — no
assumption should be made about the
relative speeds of processes

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 104

2.c Concurrency
Mutual exclusion by busy waiting

critical region
1. thread A reaches the gate

to the critical region (CR)
before B

2. thread A enters CR first,
preventing B from entering
(B is waiting or is blocked)

3. thread A exits CR; thread
B can now enter

4. thread B enters CR

Desired effect: mutual exclusion from the critical region

B
A

B
A

B
A

B
A

H
O

W
 is

 th
is

ac
hi

ev
ed

??

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 105

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 0 — disabling hardware interrupts

critical region

B

1. thread A reaches the gate
to the critical region (CR)
before B

2. as soon as A enters CR, it
disables all interrupts, thus
B cannot be scheduled

3. as soon as A exits CR, it
reenables interrupts; B can
be scheduled again

4. thread B enters CR

B
A

B
A

A

B
A

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 106

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 0 — disabling hardware interrupts
it works, but is foolish
what guarantees that the user
process is going to ever exit the
critical region?
meawhile, the CPU cannot
interleave any other task, even
unrelated to this race condition
the critical region becomes one
physically indivisible block, not
logically
also, this is not working in multi-
processors

disable hardware interrupts

reenable hardware interrupts

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 107

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 1 — simple lock variable

critical region
1. thread A reaches CR and

finds a lock at 0, which
means that A can enter

2. thread A sets the lock to 1
and enters CR, which
prevents B from entering

3. thread A exits CR and
resets lock to 0; thread B
can now enter

4. thread B sets the lock to 1
and enters CR

B
A

B
A

B
A

B
A

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 108

2.c Concurrency
Mutual exclusion by busy waiting

test lock, then set lock

reset lock

Implementation 1 — simple lock variable
the “lock” is a shared variable
entering the critical region means
testing and then setting the lock
exiting means resetting the lock

bool lock = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

while (lock);
/* do nothing: loop */

lock = TRUE;

lock = FALSE;

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 109

2.c Concurrency
Mutual exclusion by busy waiting

Implementation 1 — simple lock variable
1. thread A reaches CR and

finds a lock at 0, which
means that A can enter

1.1 but before A can set the
lock to 1, B reaches CR
and finds the lock is 0, too

1.2 A sets the lock to 1 and
enters CR but cannot
prevent the fact that . . .

1.3 . . . B is going to set the
lock to 1 and enter CR, too

critical regionB
A

B
A

B
A

B
A

2/16/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 110

2.c Concurrency
Mutual exclusion by busy waiting

test lock, then set lock

reset lock

Implementation 1 — simple lock variable
suffers from the very flaw we
want to avoid: a race condition
the problem comes from the small
gap between testing that the lock
is off and setting the lock
while (lock); lock = TRUE;

it may happen that the other
thread gets scheduled exactly
inbetween these two actions (falls
in the gap)
so they both find the lock off and
then they both set it and enter

bool lock = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

