
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 50

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads
Separation of resource ownership and execution
It's the same old throughput story, again
Practical uses of multithreading
Implementation of threads

c. Concurrency

d. Deadlocks

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 51

2.b Threads
Separation of resource ownership and execution

In fact, a process embodies two independent concepts
1. resource ownership
2. execution & scheduling

1. Resource ownership
a process is allocated address space to hold the image, and is
granted control of I/O devices and files
the O/S prevents interference among processes while they
make use of resources (multiplexing)

2. Execution & scheduling
a process follows an execution path through a program
it has an execution state and is scheduled for dispatching

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The execution part is a “thread”

2.b Threads
Separation of resource ownership and execution

Pasta for six

– boil 1 quart salty
water

– stir in the pasta

– cook on medium
until “al dente”

– serve

Program Process

CPU

input data

thread of execution

The execution part is a “thread” that can be multiplied

other thread

same CPU working
on two things

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 52

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multithreading
refers to the ability of an operating system to support multiple
threads of execution within a single process

Process-thread relationships Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2.b Threads
Separation of resource ownership and execution

ex: Solaris, Mach, Windows

ex: Java VMex: MS-DOS

ex: early UNIX

uniprogramming

multiprogramming

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 53

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 54

2.b Threads
Separation of resource ownership and execution

Multithreading requires changes in the process
description model

stack

process control
block (PCB)

program
code

data

each thread of execution
receives its own control block
and stack

own execution state
(“Running”, “Blocked”, etc.)
own copy of CPU registers
own execution history (stack)

the process keeps a global
control block listing resources
currently used

process control
block (PCB)

program
code

data

thread 1 stack

thread 1 control
block (TCB 1)

thread 2 stack

thread 2 control
block (TCB 2)

New process image

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 55

2.b Threads
Separation of resource ownership and execution

Per-process items and per-thread items in the control
block structures

process identification data
numeric identifiers of the process, the
parent process, the user, etc.

CPU state information
user-visible, control & status registers
stack pointers

process control information
scheduling: state, priority, awaited event
used memory and I/O, opened files, etc.
pointer to next PCB

process identification data + thread identifiers
numeric identifiers of the process, the
parent process, the user, etc.

CPU state information
user-visible, control & status registers
stack pointers

process control information
scheduling: state, priority, awaited event
used memory and I/O, opened files, etc.
pointer to next PCB

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Separation of resource ownership and execution

(a) Three processes with one thread (a) One process with three threads

2 3 Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Multithreaded process model
all threads share the same address space and resources
spawning a new thread only involves allocating a new stack
and a new CPU state block

Single-threaded and multithreaded process models (in abstract space)
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 56

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Separation of resource ownership and execution

Single-threaded and multithreaded process models (in abstract space)

Multithreaded process model (another view)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 57

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Separation of resource ownership and execution

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

Multithreaded process model (yet another view)

Single-threaded and multithreaded process models (in abstract space)
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 58

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 59

2.b Threads
Separation of resource ownership and execution

program is
on disk

Blocked

Ready Running ExitNew
dispatch

timeout

releaseadmit

event
wait

event
occursSuspended

Ready

ac
tiv

ate

event
occurs

su
sp

en
d

ac
tiv

ate

su
sp

en
d

admit

Suspended
Blocked

program is
in memory

Possible thread-level statesPossible thread-level states
threads (like processes) can be ready, running or blocked
threads can’t be suspended (“swapped out”), only processes can

Transition diagram of a thread state model

Suspended
Ready

event
occurs

Suspended
Blocked

Blocked

Ready Running ExitNew
dispatch

timeout

deathspawned

event
wait

event
occurs

program is
in memory

program is
on disk

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

In the laundry room
the washing machine takes 20 minutes
the dryer takes 40 minutes

2.b Threads
It's the same old throughput story, again

after Gill Pratt (2000) How Computers Work.
ADUni.org/courses.

washer dryer

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 60

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Doing two loads in a sequence
latency = time for one execution to complete = 60 mn
throughput = rate of completed executions = 2 / 120 mn

Two loads in a sequence

2.b Threads
It's the same old throughput story, again

time20 mn

washer dryer

washer dryer

latency

= 1 / 60 mn

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 61

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Doing two loads in (pseudo)parallel
latency = time for one execution to complete = 60 to 80 mn
throughput = rate of completed executions = 2 / 100 mn

Two loads in parallel

2.b Threads
It's the same old throughput story, again

time20 mn

washer dryer

washer dryer

= 1 / 50 mn
→ pseudoparallelism has improved

throughput (but not latency)

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 62

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 63

2.b Threads
It's the same old throughput story, again

This is the principle used in processor pipelining
here, washer & dryer are regularly clocked stages
without pipelining: throughput is 1 over the sum of all stages

throughput = 1 / 60 mn
(latency = 60 mn)

Without pipelining

fetch ALU

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 64

2.b Threads
It's the same old throughput story, again

This is the principle used in processor pipelining
here, washer & dryer are regularly clocked stages
with pipelining: throughput is only 1 over the longest stage

throughput = 1 / 40 mn
(but latency = 80 mn)

With pipelining

fetch ALU

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 65

2.b Threads
It's the same old throughput story, again

This is also the principle used in multitasking
here, the washer is the CPU and the dryer is one I/O device
wash & dry times may vary with loads and repeat in any order

Without multitasking

CPU I/O wait CPU

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 66

2.b Threads
It's the same old throughput story, again

This is also the principle used in multitasking
thanks to multitasking, throughput (CPU utilization) is much
higher (but the total time to complete a process is also longer)

With multitasking

CPU I/O wait CPU

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 67

2.b Threads
It's the same old throughput story, again

pr
g

2

pr
g

2

prg 3
pr

g
3

prg 1
pr

g
1

prg 1

prg 4

process 1

process 2

process 3

process 4

This is also the principle used in multitasking

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 68

2.b Threads
It's the same old throughput story, again

And, naturally, the same idea applies in multithreading
multithreading is basically the same as multitasking at a finer
level of temporal resolution (and within the same address space)
the same illusion of parallelism is achieved at a finer grain

process 1prg 1
pr

g
1

prg 1

Multithreading

thread 3
thread 2

thread 4

thread 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 69

2.b Threads
It's the same old throughput story, again

process 1

process 2

process 3

process 4

And, naturally, the same idea applies in multithreading
in a single-processor system, there is still only one CPU
(washing machine) going through all the threads of all the
processes

Multithreading

CPU

thread 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 70

2.b Threads
It's the same old throughput story, again

From processes to threads: a shift of levels
container paradigm

there can be multiple processes running in one computer
there can be multiple threads running in one process

resource sharing paradigm
multiple processes share hardware resources: CPU,
physical memory, I/O devices
multiple threads share process-owned resources: memory
address space, opened files, etc.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 71

2.b Threads
Practical uses of multithreading

Illustration: two shopping scenarios
Single-threaded shopping

you are in the grocery store
first you go to produce and grab salad and apples, then you
go to dairy and grab milk, butter and cheese
it took you about 1mn x 5 items = 5mn

2mn
3mn

P
D

Multithreaded shopping
you take your two kids with you to the grocery store
you send them off in two directions with two missions, one
toward produce, one toward dairy
you wait for their return (at the slot machines) for a
maximum duration of about 1mn x 3 items = 3mn

2mn
3mn

P
D

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 72

2.b Threads
Practical uses of multithreading

void main(...)
{

char *produce[] = { "salad", "apples", NULL };
char *dairy[] = { "milk", "butter", "cheese", NULL };

print_msg(produce);
print_msg(dairy);

}

void print_msg(char **items)
{

int i = 0;
while (items[i] != NULL) {

printf("grabbing the %s...”, items[i++]);
fflush(stdout);
sleep(1);

}
}

Single-threaded shopping code

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Practical uses of multithreading

> ./single_shopping
grabbing the salad...
grabbing the apples...
grabbing the milk...
grabbing the butter...
grabbing the cheese...
>

Single-threaded shopping diagram and output

Results of single-threaded shopping
total duration ≈ 5 seconds; outcome is deterministic

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 73

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 74

2.b Threads
Practical uses of multithreading

void main(...)
{

char *produce[] = { "salad", "apples", NULL };
char *dairy[] = { "milk", "butter", "cheese", NULL };

print_msg(produce);
print_msg(dairy);

}

void print_msg(char **items)
{

int i = 0;
while (items[i] != NULL) {

printf("grabbing the %s...”, items[i++]);
fflush(stdout);
sleep(1);

}
}

void main(...)
{

char *produce[] = { "salad", "apples", NULL };
char *dairy[] = { "milk", "butter", "cheese", NULL };
void *print_msg(void *);
pthread_t th1, th2;

pthread_create(&th1, NULL, print_msg, (void *)produce);
pthread_create(&th2, NULL, print_msg, (void *)dairy);
pthread_join(th1, NULL);
pthread_join(th2, NULL);

}

void *print_msg(void *items)
{

int i = 0;
while (items[i] != NULL) {

printf("grabbing the %s...”, (char *)(items[i++]));
fflush(stdout);
sleep(1);

}
return NULL;

}

send the kids off!

wait for their return

Multithreaded shopping code

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Results of multithreaded shopping
total duration ≈ 3 seconds; outcome is nondeterministic

Multithreaded shopping diagram and possible outputs

2.b Threads
Practical uses of multithreading

> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 75

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 76

2.b Threads
Practical uses of multithreading

System calls for thread creation and termination wait
err = pthread_create(pthread_t *th,

pthread_attr_t *attr,
void *(*func)(void *),
void *arg)

creates a new thread of execution and calls func(arg)
within that thread; the new thread can be given specific
attributes attr or default attributes NULL

err = pthread_join(pthread_t th,
void **retval)

blocks the calling thread until the thread specified by th
terminates; the return value from th can be stored in
retval

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 77

2.b Threads
Practical uses of multithreading

Benefits of multithreading compared to multitasking
it takes less time to create a new thread than a new process
it takes less time to terminate a thread than a process
it takes less time to switch between two threads within the
same process than between two processes
threads within the same process share memory and files,
therefore they can communicate with each other without having
to invoke the kernel
for these reasons, threads are sometimes called “lightweight
processes”

→ if an application should be implemented as a set of related
executions, it is far more efficient to use threads than processes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 78

2.b Threads
Practical uses of multithreading

Examples of real-world multithreaded applications
Web client (browser)

must download page components (images, styles, etc.)
simultaneously; cannot wait for each image in series

Web server
must serve pages to hundreds of Web clients
simultaneously; cannot process requests one by one

word processor, spreadsheet
provides uninterrupted GUI service to the user while
reformatting or saving the document in the background

→ again, same principles as time-sharing (illusion of interactivity
while performing other tasks), this time inside the same process

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Practical uses of multithreading

Web client and Remote Procedure Calls (RPCs)
the client uses multiple threads to send multiple requests to the
same server or different servers, greatly increasing performance

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Client RPC using a single thread vs. multiple threads
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 79

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Practical uses of multithreading

Web server
as each new request comes in, a “dispatcher thread” spawns a
new “worker thread” to read the requested file (worker threads
may be discarded or recycled in a “thread pool”)

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

A multithreaded Web server
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 80

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Practical uses of multithreading

Word processor
one thread listens continuously to keyboard and mouse events
to refresh the GUI; a second thread reformats the document (to
prepare page 600); a third thread writes to disk periodically

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

A word processor with three threads
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 81

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 82

2.b Threads
Practical uses of multithreading

Patterns of multithreading usage across applications
perform foreground and background work in parallel

illusion of full-time interactivity toward the user while
performing other tasks (same principle as time-sharing)

allow asynchronous processing
separate and desynchronize the execution streams of
independent tasks that don’t need to communicate
handle external, surprise events such as client requests

increase speed of execution
“stagger” and overlap CPU execution time and I/O wait
time (same principle as multiprogramming)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Two broad categories of thread implementation
User-Level Threads (ULTs)
Kernel-Level Threads (KLTs)

2.b Threads
Implementation of threads

Pure user-level (ULT), pure kernel-level (KLT) and combined-level (ULT/KLT) threads

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 83

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Implementation of threads

A user-level thread package

User-Level Threads (ULTs)
the kernel is not aware of the existence of threads, it knows
only processes with one thread of execution (one PC)
each user process manages its own private thread table

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

light thread switching: does not
need kernel mode privileges
cross-platform: ULTs can run
on any underlying O/S
if a thread blocks, the entire
process is blocked, including
all other threads in it

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 84

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Implementation of threads

A kernel-level thread package

Kernel-Level Threads
the kernel knows about and manages the threads: creating and
destroying threads are system calls

fine-grain scheduling, done on
a thread basis
if a thread blocks, another one
can be scheduled without
blocking the whole process
heavy thread switching
involving mode switch

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 85

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2.b Threads
Implementation of threads

Hybrid implementation
combine both approaches: graft ULTs onto KLTs

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Multiplexing ULTs onto KLTs
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 86

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 87

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads
Separation of resource ownership and execution
It's the same old throughput story, again
Practical uses of multithreading
Implementation of threads

c. Concurrency

d. Deadlocks

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

