
Principles of Operating Systems
CS 446/646

2. Processes

René Doursat

Department of Computer Science & Engineering
University of Nevada, Reno

Spring 2006

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 2

Principles of Operating Systems
CS 446/646

0. Course Presentation

1. Introduction to Operating Systems

2. Processes

3. Memory Management

4. CPU Scheduling

5. Input/Output

6. File System

7. Case Studies

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 3

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 4

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

What is a process?
Process states
Process description
Process control

b. Threads

c. Concurrency

d. Deadlocks

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 5

2.a Process Description & Control
What is a process?

A process is . . .A process is the activity of executing a program

Pasta for six

– boil 1 quart salty
water

– stir in the pasta

– cook on medium
until “al dente”

– serve

Program Process

CPU

input data

thread of execution

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 6

2.a Process Description & Control
What is a process?

1. Given that a computer system is organized into
hardware resources (CPU, memory, I/O, timer, disks, etc.)
operating system software
user application software

2. Given the O/S responsibility of executing applications
resources be made available to multiple applications
the CPU, in particular, be switched among multiple applications
the CPU and I/O devices be utilized efficiently

. . . the approach taken by modern O/S is the “process”
modern O/S rely on a model in which the execution of an
application is abstracted into one or more processes

Resource allocation for processes (one snapshot in time)

The O/S has to multiplex resources to the processes
a number of processes have been created
each process during the course of its execution needs access
to system resources: CPU, main memory, I/O devices

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2.a Process Description & Control
What is a process?

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 7

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 8

2.a Process Description & Control
What is a process?

prg 3

prg 1

pr
g

1

pr
g

2

pr
g

2

prg 4

pr
g

3

prg 1.

prg 3prg 1

pr
g

1

pr
g

2

pr
g

2.prg 4

pr
g

3

prg 1

Multitasking can be conveniently described in terms of
multiple processes running in (pseudo)parallel

(a) Multitasking from the CPU’s viewpoint

Pseudoparallelism in multitasking

pr
g

2

pr
g

2

prg 3
pr

g
3

prg 1
pr

g
1

prg 1

prg 4

(b) Multitasking from the processes’ viewpoint = 4 virtual program counters

process 1

process 2

process 3

process 4

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 9

2.a Process Description & Control
What is a process?

A process image consists
of three components
1.
2.

3.

Typical process image implementation

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

A process image consists
of three components
1. an executable program
2. the associated data

needed by the program
3. the execution context of

the process, which
contains all information the
O/S needs to manage the
process (ID, state, CPU
registers, stack, etc.)

user
address
space

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 10

2.a Process Description & Control
What is a process?

The Process Control Block (PCB)

Typical process image implementation

is included in the context,
along with the stack
is a “snapshot” that contains
all necessary and sufficient
data to restart a process
where it left off (ID, state,
CPU registers, etc.)
is one entry in the operating
system’s process table
(array or linked list)

PCB 1 PCB 2 PCB 3
. . .

context

user
address
space program

code

data

stack

process
control block

(PCB)

A dispatcher switches the CPU between processes
the dispatcher is a routine program in kernel memory space

2.a Process Description & Control
What is a process?

Dispatching between three processes

kernel

(assuming that the programs are
stored at the top of the images)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

PC

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 11

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 12

2.a Process Description & Control
What is a process?

(b) Multitasking from the processes’ viewpoint

pr
g

2

pr
g

2

prg 3
pr

g
3

prg 1
pr

g
1

prg 1

prg 4

prg 3prg 1

pr
g

1

pr
g

2

pr
g

2.prg 4

pr
g

3

prg 1

process 1

process 2

process 3

process 4

pr
g

2

pr
g

2

prg 3
pr

g
3

pr
g

1

pr
g

1
prg 1

pr
g

4

O/S dispatcher

A dispatcher switches the CPU between processes
the dispatcher is a routine program in kernel memory space

(a) Multitasking from the CPU’s viewpoint

Not
running Running

??

??

????

2.a Process Description & Control
Process states

Transition diagram of a two-state process model

Deep truth: at any time, a given process is either being
executed by the CPU or it is not

thus, a process can have two states: running or not running
dispatch

pause

exitenter

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 13

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 14

2.a Process Description & Control
Process states

How does the O/S keep track of processes and states?
by keeping a queue of pointers to the process control blocks

the queue can be implemented as a linked list if each PCB
contains a pointer to the next PCB

Queuing diagram of a two-state process model

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

How does the O/S keep track of processes and states?

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 15

2.a Process Description & Control
Process states

Some events that lead to process creation (enter)Some events that lead to process creation (enter)
the system boots

when a system is initialized, several background
processes or “daemons” are started (email, logon, etc.)

a user requests to run an application
by typing a command in the CLI shell or double-clicking in
the GUI shell, the user can launch a new process

an existing process spawns a child process
for example, a server process (print, file) may create a
new process for each request it handles
the init daemon waits for user login and spawns a shell

a batch system takes on the next job in line

all
 ca

se
s o

f p
ro

ce
ss

 sp
aw

nin
g

Process creation by spawning

A tree of processes on a typical UNIX system

2.a Process Description & Control
Process states

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 16

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 17

2.a Process Description & Control
Process states

...
int main(...)
{

...
if ((pid = fork()) == 0) // create a process
{

fprintf(stdout, "Child pid: %i\n", getpid());
err = execvp(command, arguments); // execute child

// process
fprintf(stderr, "Child error: %i\n", errno);
exit(err);

}
else if (pid > 0) // we are in the
{ // parent process

fprintf(stdout, "Parent pid: %i\n", getpid());
pid2 = waitpid(pid, &status, 0); // wait for child
... // process

}
...

return 0;
}

Implementing a shell command interpreter by process spawning

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 18

2.a Process Description & Control
Process states

O/S

P1 context

P1 program

P1 data

1. Clone child process
pid = fork()

pr
oc

es
s

1

O/S

P1 context

P1 program

P1 data

P2 context

P2 program

P2 data

2. Replace child’s image
execve(name, ...)

≈ P1 context

P1 program

P1 data

O/S

P1 context

P1 program

P1 data

pr
oc

es
s

2

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 19

2.a Process Description & Control
Process states

Some events that lead to process termination (exit)Some events that lead to process termination (exit)
regular completion, with or without error code

the process voluntarily executes an exit(err)
system call to indicate to the O/S that it has finished

fatal error (uncatchable or uncaught)
service errors: no memory left for allocation, I/O error, etc.
total time limit exceeded
arithmetic error, out-of-bounds memory access, etc.

killed by another process via the kernel
the process receives a SIGKILL signal
in some systems the parent takes down its children with it

O/S-triggered
(following system

call or preemption)

process-
triggered

hardware interrupt-
triggered

software interrupt-
triggered

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 20

2.a Process Description & Control
Process states

Some events that lead to process pause / dispatchSome events that lead to process pause / dispatch
I/O wait

a process invokes an I/O system call that blocks waiting
for the I/O device: the O/S puts the process in “Not
Running” mode and dispatches another process to the
CPU

preemptive timeout
the process receives a timer interrupt and relinquishes
control back to the O/S dispatcher: the O/S puts the
process in “Not Running” mode and dispatches another
process to the CPU
not to be confused with “total time limit exceeded”, which
leads to process termination

O/S-triggered
owing system call)(foll

hardware interrupt-
triggered (timer)

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 21

2.a Process Description & Control
Process states

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

11 steps in making a system call

Steps in making a system call
that must wait for I/O
1. – 3. . . . program prepares stack
4. . . . program calls read

5. . . . read stores #read in reg
6. . . . read executes TRAP

7. . . . kernel dispatches to call handler
8. . . . system call handler runs
9. control does not return to user space

right away; the O/S decides to block the
caller (“Not Running”) because there is
no input to read yet; instead, control
eventually returns to another process

→ not just mode switch: full process switch!

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 22

2.a Process Description & Control
Process states

Problem with the two-state model?

Not
running Running

dispatch

pause

exitenter

Problem with the two-state model
some “Not Running” processes are blocked (waiting for I/O, etc.)
the O/S wastes time scanning the queue for ready processes

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Transition diagram of a three-state (“Blocked/Ready”) process model

→ solution: divide “Not Running” into “Ready” and “Blocked”

Blocked

Ready

??
??

??

event wait
(block)

event occurs
(unblock)

timeout

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 23

2.a Process Description & Control
Process states

Some events that lead to process pause / dispatch
I/O wait

a process invokes an I/O system call that blocks waiting
for the I/O device: the O/S puts the process in “Not
Running” mode and dispatches another process to the
CPU

preemptive timeout
the process receives a timer interrupt and relinquishes
control back to the O/S dispatcher: the O/S puts the
process in “Not Running” mode and dispatches another
process to the CPU
not to be confused with “total time limit exceeded”, which
leads to process termination

O/S-triggered
(following system call)

hardware interrupt-
triggered (timer)

Some events that lead to process timeout / dispatch
I/O wait

a process invokes an I/O system call that blocks waiting
for the I/O device: the O/S puts the process in
“Blocked” mode and dispatches another process to the
CPU

preemptive timeout
the process receives a timer interrupt and relinquishes
control back to the O/S dispatcher: the O/S puts the
process in “Ready” mode and dispatches another
process to the CPU
not to be confused with “total time limit exceeded”, which
leads to process termination

O/S-triggered
(following system call)

hardware interrupt-
triggered (timer)

block / unblock

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 24

2.a Process Description & Control
Process states

How does the O/S keep track of three process states?

Queuing diagram of a three-state (“Blocked/Ready”) process model

How does the O/S keep track of three process states?
by keeping an extra queue for blocked processes

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Can we do more?

2.a Process Description & Control
Process states

To further reduce scanning, blocked processes can be
placed in separate queues depending on the event type

Queuing diagram of a three-state (“Blocked/Ready”) process model with multiple event queues

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 25

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 26

2.a Process Description & Control
Process states

exitenter

Blocked

Ready Running
dispatch

timeout

event
wait

event
occurs

How is a process actually created (entered)?

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

conversely with termination: first, program & data are swapped
out, while the PCB is retained in an “Exit” pool, then removed

Transition diagram of a five-state (New/Exit) model

ExitNew
releaseadmit

creation:
• spawning
• user action
• batch, etc.

program is
in memory

How is a process actually created (entered)?
in two steps: first the PCB is created and put in a “New” pool
then, program & data are loaded and the process is “Ready”

Problems with the “Blocked/Ready” model?

program is
in memory

Blocked

Ready Running ExitNew
dispatch

timeout

releaseadmit

event
wait

event
occurs

2.a Process Description & Control
Process states

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Problems with the “Blocked/Ready” model
blocked processes are taking up memory space
a hungry CPU might soon run out of ready processes in memory

Transition diagram of a six-state (“Suspended”) model

Suspended

suspend
(swap out)

activate
(swap in)

→ solution: swap processes out of memory and put them into a
“Suspended” state

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 27

Last problem with the “Suspended” model . . .

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2.a Process Description & Control
Process states

Last problem with the “Suspended” model
why swap in a suspended process that was blocked anyway?

program is
in memory

Blocked

Ready Running ExitNew
dispatch

timeout

releaseadmit

event
wait

event
occurs

Suspended

suspend

activate Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Transition diagram of a seven-state model

→ solution: add a “Suspended Ready” state

program is
on disk

Blocked

Ready Running ExitNew
dispatch

timeout

releaseadmit

event
wait

event
occursSuspended

Ready

ac
tiv

ate

event
occurs

su
sp

en
d

ac
tiv

ate

su
sp

en
d

admit

Suspended
Blocked

program is
in memory

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 28

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 29

2.a Process Description & Control
Process states

Two independent concepts × two values each
whether a process is waiting on an event (is “Blocked”) or not
whether a process has been swapped out of main memory (is
“Suspended”) or not

= Four combined states
“Ready”: the process is in memory and available for execution
“Blocked”: the process is in main memory awaiting an event
“Suspended Blocked”: the process is in secondary memory
and awaiting an event
“Suspended Ready”: the process is in secondary memory but
is available for execution as soon as it is loaded into memory

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 30

2.a Process Description & Control
Process states

Note: Release of memory by
swapping is not the only
motivation for suspending
processes. Various background
processes may also be turned
off and on, depending on CPU
load, suspicion of a problem,
some periodical timer or by user
request.

2.a Process Description & Control
Process description

Resource allocation for processes (one snapshot in time)

The O/S has to multiplex resources to the processes
a number of processes have been created
each process during the course of its execution needs access
to system resources: CPU, main memory, I/O devices

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 31

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 32

2.a Process Description & Control
Process description

Carmen Tomfohrde - Three-ring binders

To do this, the O/S must be a zealous
bureaucrat keeping all sorts of tables

memory tables – what part of memory is
currently reserved for what process
I/O tables – what I/O device is currently
assigned to what process
file tables – what file is currently opened by
what process
process tables – what are the processes
running, blocked, suspended, etc.

Naturally, these tables are cross-
referenced in many ways

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 33

2.a Process Description & Control
Process description

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

General structure of an operating system’s control tables

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 34

2.a Process Description & Control
Process description

In the process table, the O/S keeps one ID structure per
process, the Process Control Block (PCB), containing:

process identification data
numeric identifiers of the process, the
parent process, the user, etc.

CPU state information
user-visible, control & status registers
stack pointers

process control information
scheduling: state, priority, awaited event
used memory and I/O, opened files, etc.
pointer to next PCB

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 35

2.a Process Description & Control
Process description

Illustrative contents of a process image in (virtual) memory

Example of process and PCB location in memory

O/S

process 2

process 1

context

program
code

data

program
code

data

stack

process
control block

(PCB)

identification

program
code

data

stack

CPU state info
control info

stack

• numeric identifier
• parent identifier
• user identifier
• etc.

• user-visible registers
• control & status

registers
• stack pointers, etc.

• schedulg & state info
• links to other proc’s
• memory privileges
• etc.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 36

2.a Process Description & Control
Process description

Note: In reality, depending on the specific O/S:
PCB, stack, and user address space may
be laid out in a different order
within user space, data and program may
be mixed.

Moreover:
the process image may not be present in
physical memory in its entirety
the portion of process image in memory
may not be contiguous, but distributed over
disjoint address areas (“pages”).

We will meet the last two concepts again
when we study virtual memory.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 37

2.a Process Description & Control
Process description

The PCB is the most important O/S data structure
the set of PCBs (the process table) practically defines the state
of the O/S
PCBs must be read/modified all the time by almost all modules
in the O/S: scheduler, resource allocator, interrupt handler,
performance monitor, etc.
therefore it is a good design practice to dedicate one low-level
handler (“clerk”) to the protection of the process table; then, the
modules must ask this handler for any read/write access
we have seen this design pattern before: encapsulate a critical
resource in a service layer or module for better control and
orderly access; this is the whole story of an O/S!

2.a Process Description & Control
Process description

Structure of process lists or queues

The process table can be split into per-state queues
PCBs can be linked together if they contain a pointer field

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 38

2.a Process Description & Control
Process description

Various I/O device queues

The blocked processes can themselves be split into
device-specific queues

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 39

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 40

2.a Process Description & Control
Process description

Sample of the PCB data structure task_struct in Linux

struct task_struct
{

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
unsigned long flags; /* per process flags, defined below */
...
struct mm_struct *mm; /* memory */
...
struct task_struct *next_task, *prev_task; /* linked list */
...
struct linux_binfmt *binfmt; /* task state */
int exit_code, exit_signal;
...
pid_t pid; /* process ID */
pid_t pgrp; /* process group ID */
...
/*
* pointers to parent process, youngest child, younger sibling,
* older sibling, respectively.
*/

struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
...
struct thread_struct thread; /* CPU-specific state of this task */
...
struct files_struct *files; /* open file information */
...

}

http://lxr.linux.no

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 41

2.a Process Description & Control
Process control

How is a process created by the O/S, step by step?
1. a unique identifier is assigned to the new process

one new entry is added to the primary process table
2. memory space is allocated for the process

this includes program (with linkages), data, stack and PCB
3. the PCB is constructed and initialized

ID, state = “Ready”, CPU state = empty, resources = none
4. the PCB is placed in the appropriate queue (linked list)
5. other O/S modules are notified about the new process

create or expand other data structures to accommodate
info about the new process

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 42

2.a Process Description & Control
Process control

What events trigger the O/S to switch processes?
interrupts — external, asynchronous events, independent of
the currently executed process instructions

clock interrupt → O/S checks time and may block process
I/O interrupt → data has come, O/S may unblock process
memory fault → O/S may block process that must wait for
a missing page in memory to be swapped in

exceptions — internal, synchronous (but involuntary) events
caused by instructions → O/S may terminate or recover process
system calls — voluntary synchronous events calling a specific
O/S service → after service completed, O/S may either resume
or block the calling process, depending on I/O, priorities, etc.

traps

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 43

2.a Process Description & Control
Process control

Interrupts or traps
are caught in a third
stage of the fetch/
execute cycle and
transfer control (PC) to
an interrupt handler in
kernel space,
which branches to O/S
routines specific to
types of interrupts;
the CPU is eventually
returned to this user
program . . . or another Stallings, W. (2004) Operating Systems:

Internals and Design Principles (5th Edition).

2.a Process Description & Control
Process control

Process switch

CPU switch from process to process

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 44

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 45

2.a Process Description & Control
Process control

Mode switching ≠ process switching
when handling an interrupt, execution is always switched from
user mode to kernel mode (“mode switch”)
but this is independent from whether the O/S will return control
to the interrupted process or another process (“process switch”)

1. if control (execution) eventually returns to the interrupted
process, for example after a nonblocking system call:

only the CPU state information (PC, registers, stack info)
needed to be saved; this was initiated by the hardware

2. if control eventually passes to another process, for example
after a blocking call, interrupt or trap:

the whole PCB is saved; this is done by the O/S scheduler

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 46

2.a Process Description & Control
Process control

How does a full process switch happen, step by step?
1. save CPU context, including PC and registers (the only step

needed in a simple mode switch)
2. update process state (to “Ready”, “Blocked”, etc.) and other

related fields of the PCB
3. move the PCB to the appropriate queue
4. select another process for execution: this decision is made by the

CPU scheduling algorithm of the O/S
5. update the PCB of the selected process (state = “Running”)
6. update memory management structures
7. restore CPU context to the values contained in the new PCB

2.a Process Description & Control
Process control

How is the O/S itself executed? Is it a process, too?

(a) Separate kernel

(b) O/S functions execute
within user processes

(c) O/S functions execute
as separate processes

Relationship between O/S execution and user processesStallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 47

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 48

2.a Process Description & Control
Process control

Possible designs for the execution of the O/S itself
nonprocess kernel (traditional approach in older O/S)

simple mode switch; kernel executes in own region of
memory with own stack, outside of any process (i.e., no
associated PCB); the only program that is not a “process”

O/S functions execute within each user process (most PCs)
the O/S is a collection of routines that can be “attached” to
the processes in memory via shared address space
only the mode is switched, the current process (which
executes user program + kernel program) continues to run

O/S functions execute as full, separate processes (microkernels)
modular O/S with clean, minimal interfaces

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 49

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

What is a process?
Process states
Process description
Process control

b. Threads

c. Concurrency

d. Deadlocks

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 50

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads
Separation of resource ownership and execution
It's the same old throughput story, again
Practical uses of multithreading
Implementation of threads

c. Concurrency

d. Deadlocks

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 51

2.b Threads
Separation of resource ownership and execution

In fact, a process embodies two independent concepts
1. resource ownership
2. execution & scheduling

1. Resource ownership
a process is allocated address space to hold the image, and is
granted control of I/O devices and files
the O/S prevents interference among processes while they
make use of resources (multiplexing)

2. Execution & scheduling
a process follows an execution path through a program
it has an execution state and is scheduled for dispatching

The execution part is a “thread”

2.b Threads
Separation of resource ownership and execution

Pasta for six

– boil 1 quart salty
water

– stir in the pasta

– cook on medium
until “al dente”

– serve

Program Process

CPU

input data

thread of execution

The execution part is a “thread” that can be multiplied

other thread

same CPU working
on two things

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 52

Multithreading
refers to the ability of an operating system to support multiple
threads of execution within a single process

Process-thread relationships Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2.b Threads
Separation of resource ownership and execution

ex: Solaris, Mach, Windows

ex: Java VMex: MS-DOS

ex: early UNIX

uniprogramming

multiprogramming

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 53

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 54

2.b Threads
Separation of resource ownership and execution

Multithreading requires changes in the process
description model

stack

process control
block (PCB)

program
code

data

each thread of execution
receives its own control block
and stack

own execution state
(“Running”, “Blocked”, etc.)
own copy of CPU registers
own execution history (stack)

the process keeps a global
control block listing resources
currently used

process control
block (PCB)

program
code

data

thread 1 stack

thread 1 control
block (TCB 1)

thread 2 stack

thread 2 control
block (TCB 2)

New process image

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 55

2.b Threads
Separation of resource ownership and execution

Per-process items and per-thread items in the control
block structures

process identification data
numeric identifiers of the process, the
parent process, the user, etc.

CPU state information
user-visible, control & status registers
stack pointers

process control information
scheduling: state, priority, awaited event
used memory and I/O, opened files, etc.
pointer to next PCB

process identification data + thread identifiers
numeric identifiers of the process, the
parent process, the user, etc.

CPU state information
user-visible, control & status registers
stack pointers

process control information
scheduling: state, priority, awaited event
used memory and I/O, opened files, etc.
pointer to next PCB

2.b Threads
Separation of resource ownership and execution

(a) Three processes with one thread (a) One process with three threads

2 3 Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Multithreaded process model
all threads share the same address space and resources
spawning a new thread only involves allocating a new stack
and a new CPU state block

Single-threaded and multithreaded process models (in abstract space)
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 56

2.b Threads
Separation of resource ownership and execution

Single-threaded and multithreaded process models (in abstract space)

Multithreaded process model (another view)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 57

2.b Threads
Separation of resource ownership and execution

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

Multithreaded process model (yet another view)

Single-threaded and multithreaded process models (in abstract space)
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 58

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 59

2.b Threads
Separation of resource ownership and execution

program is
on disk

Blocked

Ready Running ExitNew
dispatch

timeout

releaseadmit

event
wait

event
occursSuspended

Ready

ac
tiv

ate

event
occurs

su
sp

en
d

ac
tiv

ate

su
sp

en
d

admit

Suspended
Blocked

program is
in memory

Possible thread-level statesPossible thread-level states
threads (like processes) can be ready, running or blocked
threads can’t be suspended (“swapped out”), only processes can

Transition diagram of a thread state model

Suspended
Ready

event
occurs

Suspended
Blocked

Blocked

Ready Running ExitNew
dispatch

timeout

deathspawned

event
wait

event
occurs

program is
in memory

program is
on disk

In the laundry room
the washing machine takes 20 minutes
the dryer takes 40 minutes

2.b Threads
It's the same old throughput story, again

after Gill Pratt (2000) How Computers Work.
ADUni.org/courses.

washer dryer

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 60

Doing two loads in a sequence
latency = time for one execution to complete = 60 mn
throughput = rate of completed executions = 2 / 120 mn

Two loads in a sequence

2.b Threads
It's the same old throughput story, again

time20 mn

washer dryer

washer dryer

latency

= 1 / 60 mn

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 61

Doing two loads in (pseudo)parallel
latency = time for one execution to complete = 60 to 80 mn
throughput = rate of completed executions = 2 / 100 mn

Two loads in parallel

2.b Threads
It's the same old throughput story, again

time20 mn

washer dryer

washer dryer

= 1 / 50 mn
→ pseudoparallelism has improved

throughput (but not latency)

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 62

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 63

2.b Threads
It's the same old throughput story, again

This is the principle used in processor pipelining
here, washer & dryer are regularly clocked stages
without pipelining: throughput is 1 over the sum of all stages

throughput = 1 / 60 mn
(latency = 60 mn)

Without pipelining

fetch ALU

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 64

2.b Threads
It's the same old throughput story, again

This is the principle used in processor pipelining
here, washer & dryer are regularly clocked stages
with pipelining: throughput is only 1 over the longest stage

throughput = 1 / 40 mn
(but latency = 80 mn)

With pipelining

fetch ALU

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 65

2.b Threads
It's the same old throughput story, again

This is also the principle used in multitasking
here, the washer is the CPU and the dryer is one I/O device
wash & dry times may vary with loads and repeat in any order

Without multitasking

CPU I/O wait CPU

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 66

2.b Threads
It's the same old throughput story, again

This is also the principle used in multitasking
thanks to multitasking, throughput (CPU utilization) is much
higher (but the total time to complete a process is also longer)

With multitasking

CPU I/O wait CPU

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 67

2.b Threads
It's the same old throughput story, again

pr
g

2

pr
g

2

prg 3
pr

g
3

prg 1
pr

g
1

prg 1

prg 4

process 1

process 2

process 3

process 4

This is also the principle used in multitasking

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 68

2.b Threads
It's the same old throughput story, again

And, naturally, the same idea applies in multithreading
multithreading is basically the same as multitasking at a finer
level of temporal resolution (and within the same address space)
the same illusion of parallelism is achieved at a finer grain

process 1prg 1
pr

g
1

prg 1

Multithreading

thread 3
thread 2

thread 4

thread 1

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 69

2.b Threads
It's the same old throughput story, again

process 1

process 2

process 3

process 4

And, naturally, the same idea applies in multithreading
in a single-processor system, there is still only one CPU
(washing machine) going through all the threads of all the
processes

Multithreading

CPU

thread 1

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 70

2.b Threads
It's the same old throughput story, again

From processes to threads: a shift of levels
container paradigm

there can be multiple processes running in one computer
there can be multiple threads running in one process

resource sharing paradigm
multiple processes share hardware resources: CPU,
physical memory, I/O devices
multiple threads share process-owned resources: memory
address space, opened files, etc.

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 71

2.b Threads
Practical uses of multithreading

Illustration: two shopping scenarios
Single-threaded shopping

you are in the grocery store
first you go to produce and grab salad and apples, then you
go to dairy and grab milk, butter and cheese
it took you about 1mn x 5 items = 5mn

2mn
3mn

P
D

Multithreaded shopping
you take your two kids with you to the grocery store
you send them off in two directions with two missions, one
toward produce, one toward dairy
you wait for their return (at the slot machines) for a
maximum duration of about 1mn x 3 items = 3mn

2mn
3mn

P
D

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 72

2.b Threads
Practical uses of multithreading

void main(...)
{

char *produce[] = { "salad", "apples", NULL };
char *dairy[] = { "milk", "butter", "cheese", NULL };

print_msg(produce);
print_msg(dairy);

}

void print_msg(char **items)
{

int i = 0;
while (items[i] != NULL) {

printf("grabbing the %s...”, items[i++]);
fflush(stdout);
sleep(1);

}
}

Single-threaded shopping code

2.b Threads
Practical uses of multithreading

> ./single_shopping
grabbing the salad...
grabbing the apples...
grabbing the milk...
grabbing the butter...
grabbing the cheese...
>

Single-threaded shopping diagram and output

Results of single-threaded shopping
total duration ≈ 5 seconds; outcome is deterministic

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 73

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 74

2.b Threads
Practical uses of multithreading

void main(...)
{

char *produce[] = { "salad", "apples", NULL };
char *dairy[] = { "milk", "butter", "cheese", NULL };

print_msg(produce);
print_msg(dairy);

}

void print_msg(char **items)
{

int i = 0;
while (items[i] != NULL) {

printf("grabbing the %s...”, items[i++]);
fflush(stdout);
sleep(1);

}
}

void main(...)
{

char *produce[] = { "salad", "apples", NULL };
char *dairy[] = { "milk", "butter", "cheese", NULL };
void *print_msg(void *);
pthread_t th1, th2;

pthread_create(&th1, NULL, print_msg, (void *)produce);
pthread_create(&th2, NULL, print_msg, (void *)dairy);
pthread_join(th1, NULL);
pthread_join(th2, NULL);

}

void *print_msg(void *items)
{

int i = 0;
while (items[i] != NULL) {

printf("grabbing the %s...”, (char *)(items[i++]));
fflush(stdout);
sleep(1);

}
return NULL;

}

send the kids off!

wait for their return

Multithreaded shopping code

Results of multithreaded shopping
total duration ≈ 3 seconds; outcome is nondeterministic

Multithreaded shopping diagram and possible outputs

2.b Threads
Practical uses of multithreading

> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 75

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 76

2.b Threads
Practical uses of multithreading

System calls for thread creation and termination wait
err = pthread_create(pthread_t *th,

pthread_attr_t *attr,
void *(*func)(void *),
void *arg)

creates a new thread of execution and calls func(arg)
within that thread; the new thread can be given specific
attributes attr or default attributes NULL

err = pthread_join(pthread_t th,
void **retval)

blocks the calling thread until the thread specified by th
terminates; the return value from th can be stored in
retval

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 77

2.b Threads
Practical uses of multithreading

Benefits of multithreading compared to multitasking
it takes less time to create a new thread than a new process
it takes less time to terminate a thread than a process
it takes less time to switch between two threads within the
same process than between two processes
threads within the same process share memory and files,
therefore they can communicate with each other without having
to invoke the kernel
for these reasons, threads are sometimes called “lightweight
processes”

→ if an application should be implemented as a set of related
executions, it is far more efficient to use threads than processes

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 78

2.b Threads
Practical uses of multithreading

Examples of real-world multithreaded applications
Web client (browser)

must download page components (images, styles, etc.)
simultaneously; cannot wait for each image in series

Web server
must serve pages to hundreds of Web clients
simultaneously; cannot process requests one by one

word processor, spreadsheet
provides uninterrupted GUI service to the user while
reformatting or saving the document in the background

→ again, same principles as time-sharing (illusion of interactivity
while performing other tasks), this time inside the same process

2.b Threads
Practical uses of multithreading

Web client and Remote Procedure Calls (RPCs)
the client uses multiple threads to send multiple requests to the
same server or different servers, greatly increasing performance

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Client RPC using a single thread vs. multiple threads
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 79

2.b Threads
Practical uses of multithreading

Web server
as each new request comes in, a “dispatcher thread” spawns a
new “worker thread” to read the requested file (worker threads
may be discarded or recycled in a “thread pool”)

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

A multithreaded Web server
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 80

2.b Threads
Practical uses of multithreading

Word processor
one thread listens continuously to keyboard and mouse events
to refresh the GUI; a second thread reformats the document (to
prepare page 600); a third thread writes to disk periodically

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

A word processor with three threads
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 81

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 82

2.b Threads
Practical uses of multithreading

Patterns of multithreading usage across applications
perform foreground and background work in parallel

illusion of full-time interactivity toward the user while
performing other tasks (same principle as time-sharing)

allow asynchronous processing
separate and desynchronize the execution streams of
independent tasks that don’t need to communicate
handle external, surprise events such as client requests

increase speed of execution
“stagger” and overlap CPU execution time and I/O wait
time (same principle as multiprogramming)

Two broad categories of thread implementation
User-Level Threads (ULTs)
Kernel-Level Threads (KLTs)

2.b Threads
Implementation of threads

Pure user-level (ULT), pure kernel-level (KLT) and combined-level (ULT/KLT) threads

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 83

2.b Threads
Implementation of threads

A user-level thread package

User-Level Threads (ULTs)
the kernel is not aware of the existence of threads, it knows
only processes with one thread of execution (one PC)
each user process manages its own private thread table

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

light thread switching: does not
need kernel mode privileges
cross-platform: ULTs can run
on any underlying O/S
if a thread blocks, the entire
process is blocked, including
all other threads in it

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 84

2.b Threads
Implementation of threads

A kernel-level thread package

Kernel-Level Threads
the kernel knows about and manages the threads: creating and
destroying threads are system calls

fine-grain scheduling, done on
a thread basis
if a thread blocks, another one
can be scheduled without
blocking the whole process
heavy thread switching
involving mode switch

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 85

2.b Threads
Implementation of threads

Hybrid implementation
combine both approaches: graft ULTs onto KLTs

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Multiplexing ULTs onto KLTs
2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 86

2/7-14/2006 CS 446/646 - Principles of Operating Systems - 2. Processes 87

Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads
Separation of resource ownership and execution
It's the same old throughput story, again
Practical uses of multithreading
Implementation of threads

c. Concurrency

d. Deadlocks

