
The Linux Operating System

Presented by Sebastian Smith
CS 446: Principles of Operating Systems
November 1, 2005

– p. 1/12



Overview

Introduction

GNU/Linux

Distributions

Distribution Case Studies

Questions

– p. 2/12



What is Linux?

– p. 3/12



What Linux Is

A kernel

Originally written by Linus Torvalds

Released in 1991 (Windows 3.0a)

Originally written to run on the Intel 80386

Now runs on a variety of architectures

– p. 4/12



The History of *nix

– p. 5/12



GNU/Linux

The Linux operating
system

The Linux kernel
GNU libraries and
tools

Linux would not exist
without GNU

– p. 6/12



Linux Distributions

The Linux kernel packaged with operating
system and other software

Released by companies, communities, and
individuals

Quality control: software packages are
assembled and tested before distribution

Designed for specific audiences

Currently 386 Linux distributions

– p. 7/12



Common Distributions

Ubuntu

Mandriva

SUSE

Fedora

Slackware

MEPIS

KNOPPIX

Debian

Damn Small

Gentoo

– p. 8/12



Ubuntu: Linux for Human Beings

Ubuntu = "humanity to
others"

Free of charge

Based upon Debian Sid

Easy to install

Apt package management
(DEB)

LiveCD

– p. 9/12



Gentoo

Source based distribution

Package management based
on BSD Ports

Highly customizable

Highly optimized

Excellent community

Targeted at advanced users

– p. 10/12



Review

GNU/Linux

Distributions

Distribution Case Studies

Questions

– p. 11/12



Questions?

– p. 12/12



The Linux Kernel

Presented by Sebastian Smith
CS 446: Principles of Operating Systems
November 1, 2005

– p. 1/18



Overview

Introduction

Processes and threads

Memory Management

CPU Scheduling

The Virtual File System

Questions

– p. 2/18



The Linux Kernel

Monolithic kernel

Loadable modules (microkernel-like)

Drivers can run in ring 0 or in userspace (ring
3 in x86)

10,239 lines of code at version 0.01

5,929,913 lines of code at version 2.6.0

Current stable release 2.6.14

– p. 3/18



Version Numbering

Three number version scheme A.B.C[.D]

A denotes the kernel version

B denotes the major revision (odd =
development version)

C denotes the minor revision

D optionally denotes the fix of a grave error

– p. 4/18



Kernel Component Examples

Processes and scheduler

File systems

Virtual memory

Network protocols

Device drivers

Signal handling

– p. 5/18



Kernel Diagram

– p. 6/18



Processes and Threads

Supports multiple executable file formats
including ELF and a.out

Processes implemented as a vector of tasks

Number of processes limited by size of task
vector (512 by default)

2.6 kernel support up to one billion
processes, 2.4 up to 32 thousand

– p. 7/18



Processes and Threads (Cont)

No distinction between threads and
processes ("lightweight processes")

Multiple user-level threads are mapped into a
single kernel-level process that share GID

Process created by copying the attributes of
the current process

Sharing of virtual memory causes thread
functionality

– p. 8/18



Memory Management

Virtual Memory Addressing
Three level page table
Page directory
Page middle directory
Page table
Page allocation based on the buddy
system
Page replacement based on the clock
algorithm

– p. 9/18



Memory Management (Cont)

Kernel Memory
Uses virtual memory page allocation
mechanism
Buddy system used to allocate and
deallocate memory
"Slab allocation" for odd sized memory
allocation

– p. 10/18



CPU Scheduling

Three Linux scheduling classes
SCHED_FIFO (real-time) [0–99]
SCHED_RR (real-time) [0–99]
SCHED_OTHER (non-real-time) [100–139]

Scheduling priorities may be used within each
class

A lower priority number = higher priority

– p. 11/18



SCHED_FIFO

Higher priority threads interrupt (Preemption)

Blocking will interrupt

Yield will interrupt

Interrupted thread is put in a priority queue

– p. 12/18



SCHED_RR

Similar to SCHED_FIFO

Associates a timeslice with each thread

Once time quantum expires the thread is
placed at the end of its priority queue.

Programming tip: Keep a shell with a higher
priority open at all times to kill test
applications.

– p. 13/18



SCHED_OTHER

The default Linux scheduler

Called the O(1) scheduler in the 2.6 kernel

Selection of a process and assigning it to a
processor is done in constant time

Process assigned to the "active" priority
queue when created

Once timeslice is completed process is
moved to "expired" priority queue

– p. 14/18



SCHED_OTHER (Cont)

Once all processes have been run in active
queue pointers are switched between active
and expired queues

Round robin is used to schedule processes
within the active priority queue

Favors I/O bound tasks over processor-bound
tasks

Allows for dynamic priorities [100 – 139]

– p. 15/18



The Virtual File System (VFS)

Presents a single, unified file system interface
to user processes

Defines a common file model

Assumes files are objects on local mass
storage regardless of the target file system or
underlying hardware

Files within the VFS have properties

A mapping module transforms the VFS
representation to the real file system

– p. 16/18



Review

Processes and threads

Memory Management

CPU Scheduling

The Virtual File System

Questions

– p. 17/18



Questions?

– p. 18/18


	CS446_7_Linux_OS.pdf
	The Linux Operating System
	Overview
	What is Linux?
	What Linux Is
	The History of *nix
	GNU/Linux
	Linux Distributions
	Common Distributions
	Ubuntu: Linux for Human Beings
	Gentoo
	Review
	Questions?

	CS446_7_Linux_Kernel.pdf
	The Linux Kernel
	Overview
	The Linux Kernel
	Version Numbering
	Kernel Component Examples
	Kernel Diagram
	Processes and Threads
	Processes and Threads (Cont)
	Memory Management
	Memory Management (Cont)
	CPU Scheduling
	SCHED_FIFO
	SCHED_RR
	SCHED_OTHER
	SCHED_OTHER (Cont)
	The Virtual File System (VFS)
	Review
	Questions?


