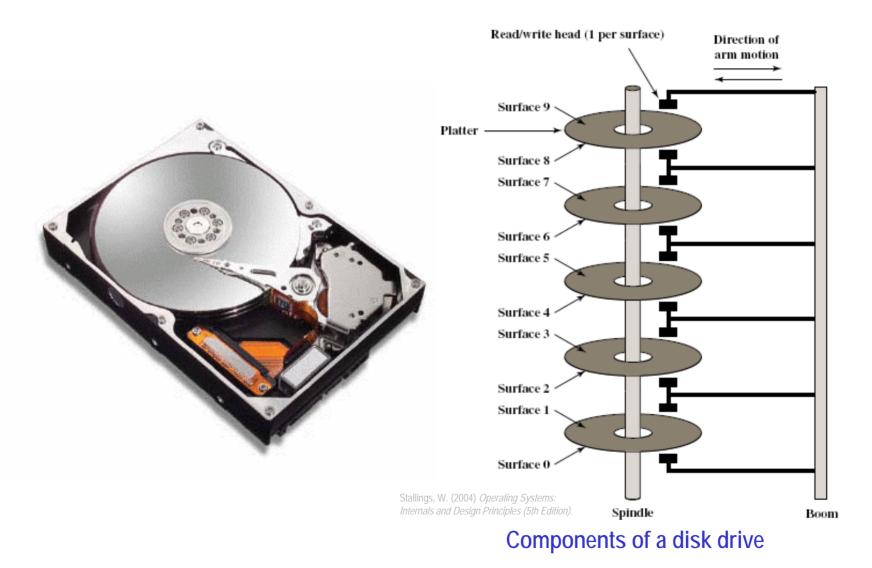
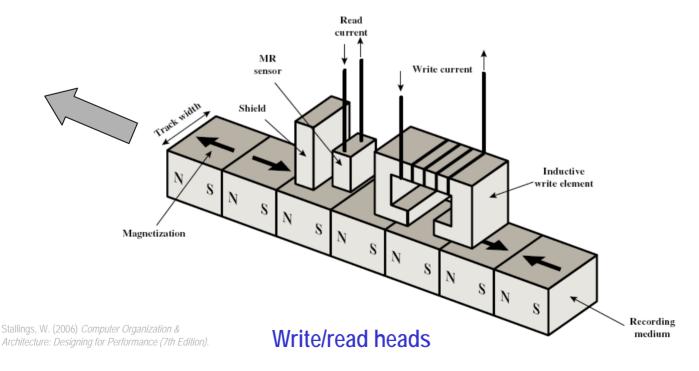

5. Input/Output

- a. Overview of the O/S Role in I/O
- **b.** Principles of I/O Hardware
- c. I/O Software Layers


d. Disk Management

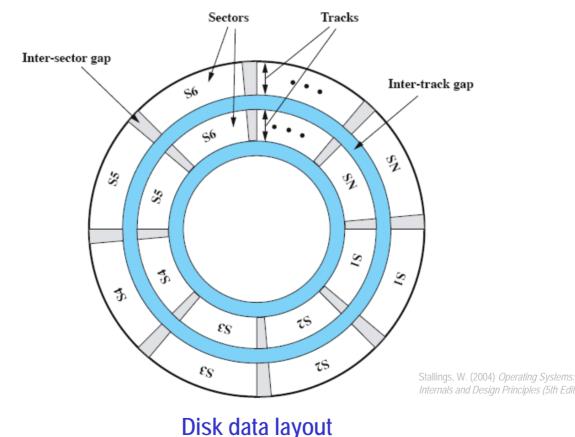
- ✓ Physical disk characteristics
- ✓ Disk formatting
- ✓ Disk scheduling


Rigid ("hard") magnetic disks

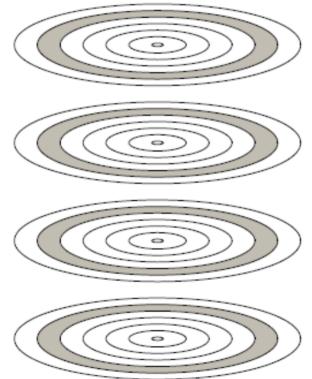
- ✓ remain today the most important secondary memory (although the gap between CPU and disk performance has increased)
- ✓ diameter shrunk from 50 cm down to 12 or 3 cm (notebooks)
- ✓ "Winchester" disks are sealed
- \checkmark components of a disk drive:
 - one or several aluminum platters stacked vertically
 - platters have magnetizable coating on both sides
 - one pair of read/write movable heads per platter surface (heads hover on air cushion, don't make contact)
 - all heads mechanically fixed so they move together and are all at same distance from center

In modern systems, read and write heads are separate

- ✓ the write head is an induction coil: produces a magnetic field
- ✓ the read head is a magnetoresistive (MR) sensor: resistance depends on magnetic field, thus generates variable voltage


Data organization and formatting

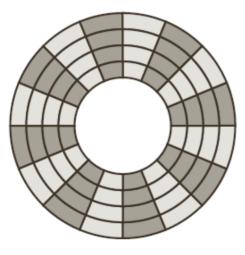
- ✓ after manufacturing, there is no information on the disk: just a blank slate (continuous surface of magnetizable metal oxide)
- before a disk can be used, each platter must receive a lowlevel format ("physical format") done by code in I/O controller:
 - series of concentric tracks (not grooves)
 - each tracks contains sectors, separated by short gaps
- ✓ then the disk may be partitioned
- ✓ finally, each partition receives a **high-level format** ("logical"):
 - boot sector, free storage map, file allocation table, etc.


 \rightarrow we'll see more of this in the File System chapter

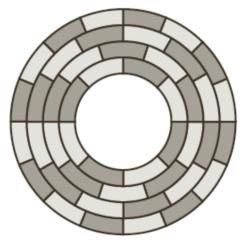
> A disk is addressed as a 1-D array of logical blocks

✓ translation between logical block # and track # + sector #

Vertically aligned tracks on multiple platters are called "cylinders"



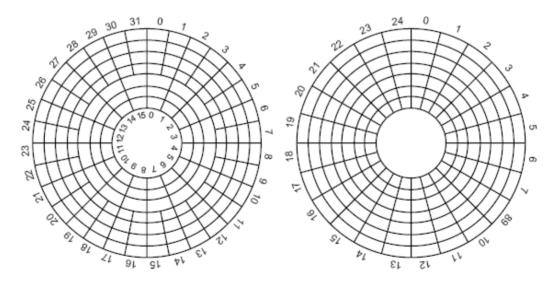
Stallings, W. (2004) *Operating Systems: Internals and Design Principles (5th Edition).*


Tracks and cylinders

Disk layout methods

- ✓ constant angular velocity: pie-shaped sectors, same number per track \rightarrow simple but wasted space on the long outer tracks
- ✓ multiple zone recording: fixed-length sectors, variable number per track → greater data density but more complicated access

(a) Constant angular velocity

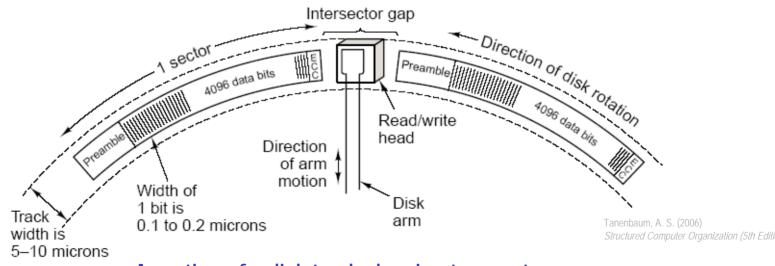

(b) Multiple zoned recording

Stallings, W. (2004) *Operating Systems:* Internals and Design Principles (5th Edition,

Comparison of disk layout methods

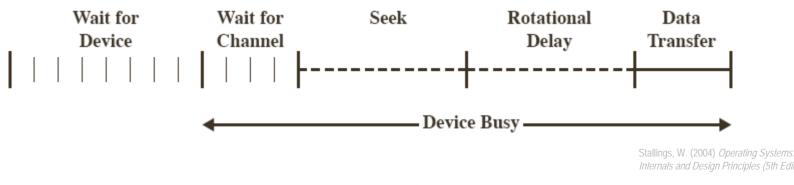
Virtual disk geometry

- ✓ most disks are physically MZR but may still present a simpler, virtual CAV geometry to the O/S
- ✓ the O/S driver uses cylinder, track, sector coordinates (x, y, z) which are remapped into zones by the I/O controller



Tanenbaum, A. S. (2001) Modern Operating Systems (2nd Edition).

Physical geometry vs. virtual geometry


Tracks are divided into fixed-length sectors

- ✓ each sector typically contains
 - 512 bytes of data
 - preceded by a preamble (for head synchronization)
 - followed by an error-correcting code (ECC)

A portion of a disk track showing two sectors

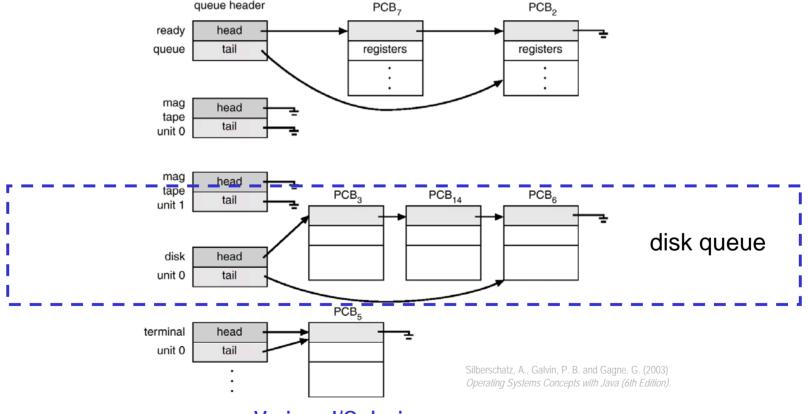
- Disk performance parameters
 - ✓ seek time: time it takes to position the head at the track
 - rotational delay: time it takes for the beginning of the sector to reach the head
 - ✓ access time = seek time + rotational delay
 - ✓ transfer time: time required for sector data transfer

Timing of a disk I/O transfer

Disk performance parameters

- ✓ average seek time typically < 10 ms (thanks to small diameter)</p>
- ✓ rotational speed $r \approx 7,500$ rpm = 1r / 8 ms → 4 ms rot. delay
- ✓ transfer time T = b / rN with b / N = transferred bytes / track

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk	
Number of cylinders	40	10601	
Tracks per cylinder	2	12	
Sectors per track	9	281 (avg)	
Sectors per disk	720	35742000	
Bytes per sector	512	512	
Disk capacity	360 KB	18.3 GB	
Seek time (adjacent cylinders)	6 msec	0.8 msec	
Seek time (average case)	77 msec	6.9 msec	
Rotation time	200 msec	8.33 msec	
Motor stop/start time	250 msec	20 sec	
Time to transfer 1 sector	22 msec	17 µsec	


Two opposites on the historical scale of disk parameters

Tanenbaum, A. S. (2001) *Modern Operating Systems (2nd Edition,*

Additional waiting time for device availability

queue header

processes blocked for I/O are put into device-specific queues \checkmark

Various I/O device queues

> Why disk scheduling matters: a timing comparison

✓ total average service time

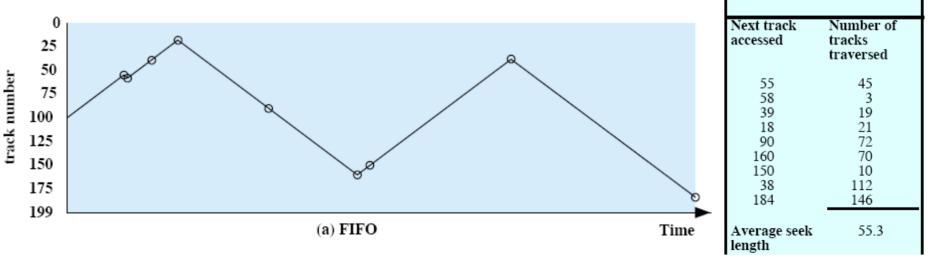
Tservice = Tseek + Trotational + Ttransfer = Tseek + 1/2r + b/rN

- ✓ assume *Tseek* = 4 ms, *r* = 7,500 rpm, 500 sectors per track × 512 bytes per sector → *Ttransfer* = 0.016 ms / sector
- ✓ first case: reading 2,500 randomly scattered sectors
 Tservice = 2,500 × (4 ms + 4 ms + 0.016 ms) = 20 seconds
- ✓ first case: reading 2,500 contiguous sectors (in 5 tracks) $Tservice = 4 \text{ ms} + 5 \times 4 \text{ ms} + 2,500 \times 0.016 \text{ ms} = 64 \text{ ms}$
- \rightarrow the order of sector access requests can make a big difference!

- > Overview of disk scheduling policies
 - ✓ kernel-level scheduling: based on requestor process
 - control of scheduling outside of disk management software
 - not intended to optimize disk utilization
 - main objective is process priorities defined by the O/S
 - or following a blind, generic policy such as FIFO (no starvation) or LIFO (locality)
 - ✓ driver-level scheduling: based on requested item
 - goal is to optimize disk utilization
 - the disk-specific software has expertise on how requests should be ordered

- Overview of disk scheduling policies
 - ✓ kernel-level (process) vs. driver-level (request) scheduling

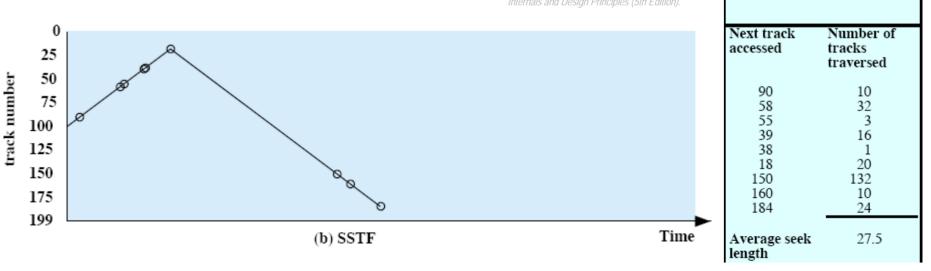
Name	Description	Remarks			
Selection according to requestor					
RSS	Random scheduling	For analysis and simulation			
FIFO	First in first out	Fairest of them all			
PRI	Priority by process	Control outside of disk queue management			
LIFO	Last in first out	Maximize locality and resource utilization			
Selection according to requested item					
SSTF	Shortest service time first	High utilization, small queues			
SCAN	Back and forth over disk	Better service distribution			
C-SCAN	One way with fast return	Lower service variability			
N-step-SCAN	SCAN of N records at a time	Service guarantee			
FSCAN	N-step-SCAN with $N =$ queue size at beginning of SCAN cycle	Load sensitive			


Stallings, W. (2004) *Operating Systems:* Internals and Design Principles (5th Edition)

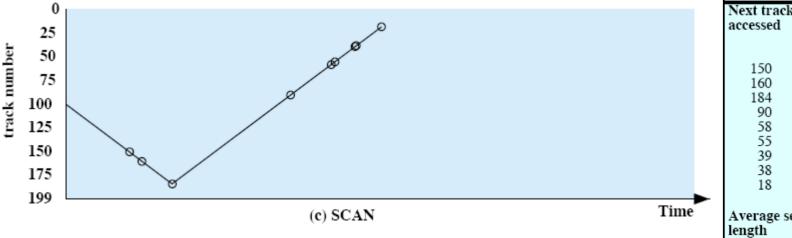
Comparing performance of scheduling policies

- ✓ assume disk with 200 tracks
- ✓ assume sequence of requested tracks in order received by disk scheduler: 55, 58, 39, 18, 90, 160, 150, 38, 184
- ✓ assume disk head initially located at track #100
- ✓ we will compare FIFO, SSTF, SCAN, C-SCAN

First-In-First-Out (FIFO)


- ✓ requests are processed in arrival order
- ✓ fair and no risk of starvation
- ✓ ok if few processes and requests cluster file sectors (locality)
- generally bad, though, as interleaving causes random seek jumps and waste of time
 Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition).

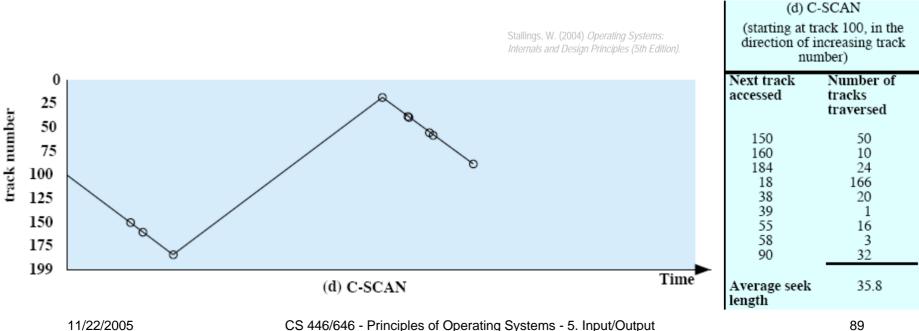
CS 446/646 - Principles of Operating Systems - 5. Input/Output


- Shortest Service (Seek) Time First (SSTF)
 - ✓ select the request that requires the least arm movement, i.e., the shortest seek time
 - much better than random or FIFO, however greater risk of starvation: requests in remote disk area may remain unfulfilled as long as there are shorter ones
 (b) SSTF (starting at track 100)

Stallings, W. (2004) Operating Systems.

CS 446/646 - Principles of Operating Systems - 5. Input/Output

- Scan or "elevator" algorithm (SCAN)
 - ✓ to prevent starvation, the arm moves in one direction only and satisfies requests "en route"
 - ✓ arm direction is reversed when reaching the last track (innermost or outermost)
 - ✓ ... or as soon as reaching last request (LOOK: the variant implemented in Linux)


(c) SCAN

(starting at track 100, in the direction of increasing track number)		
Next track	Number of	
accessed	tracks traversed	
150	50	
160	10	
184	24	
90	94	
58	32	
55	3	
39	16	
38	1	
18	20	
Average seek length	27.8	

Stallings, W. (2004) *Operating Systems:* Internals and Design Principles (5th Edition,

CS 446/646 - Principles of Operating Systems - 5. Input/Output

- Circular scan (C-SCAN)
 - same as SCAN except the arm direction of movement is never \checkmark reversed
 - this reduces the maximum delay experienced by new requests \checkmark that arrived at the opposite end of the disk

5. Input/Output

- a. Overview of the O/S Role in I/O
- **b.** Principles of I/O Hardware
- c. I/O Software Layers

d. Disk Management

- ✓ Physical disk characteristics
- ✓ Disk formatting
- ✓ Disk scheduling

5. Input/Output

- a. Overview of the O/S Role in I/O
- **b.** Principles of I/O Hardware
- c. I/O Software Layers
- d. Disk Management

- **0.** Course Presentation
- **1. Introduction to Operating Systems**
- 2. Processes
- 3. Memory Management
- 4. CPU Scheduling
- 5. Input/Output
- 6. File System
- 7. Case Studies