
Principles of Operating Systems
CS 446/646

4. CPU Scheduling

René Doursat

Department of Computer Science & Engineering
University of Nevada, Reno

Fall 2005

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 2

Principles of Operating Systems
CS 446/646

0. Course Presentation

1. Introduction to Operating Systems

2. Processes

3. Memory Management

4. CPU Scheduling

5. Input/Output

6. File System

7. Case Studies

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 3

Principles of Operating Systems
CS 446/646

4. CPU Scheduling
a. Concepts of Scheduling

b. Scheduling Algorithms

c. Queuing Analysis

d. Thread Scheduling

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 4

Principles of Operating Systems
CS 446/646

4. CPU Scheduling
a. Concepts of Scheduling

Three-level scheduling
Purpose of CPU scheduling

b. Scheduling Algorithms

c. Queuing Analysis

d. Thread Scheduling

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 5

4.a Concepts of Scheduling
Three-level scheduling

Long-term scheduling (mostly in batch)
the decision to add a program to the pool of processes
to be executed: controls the degree of multiprogramming

fre
qu

en
cy

 of
 in

ter
ve

nti
on

fin
e-

to
co

ar
se

-g
ra

in
lev

el

Medium-term scheduling
the decision to add to the number of processes that are
partially or fully in main memory (“swapping”)
not the same as paging: swapping out means removing
all the pages of a process

Short-term scheduling = CPU scheduling
the decision as to which available processes in memory
are to be executed by the processor (“dispatching”)

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 6

4.a Concepts of Scheduling
Three-level scheduling

Three-level scheduling

LONG-TERM MID-TERM

SHORT-TERM

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Three-level scheduling

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 7

4.a Concepts of Scheduling
Three-level scheduling

Reminder: process states

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Transition diagram of a seven-state model
program is

on disk

Blocked

Ready Running ExitNew
dispatch

timeout

event
wait

event
occurs

admit release

Suspended
Ready

ac
tiv

ate

event
occurs

su
sp

en
d

ac
tiv

ate

su
sp

en
d

admit

Suspended
Blocked

program is
in memory

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 8

4.a Concepts of Scheduling
Three-level scheduling

In the O/S, the CPU scheduler decides which “Ready”
process to run next (and to time out the “Running”)

the discipline it follows is the scheduling algorithm

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Transition diagram of a seven-state model
program is

on disk

Blocked

Ready Running ExitNew

Suspended
Ready

Suspended
Blocked

program is
in memory

SHORT-TERM

LONG-TERM

MID-TERM

Queuing diagram for scheduling

General queuing system for scheduling
in most algorithms, queues are not strictly FIFO: rather “pools”

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

4.a Concepts of Scheduling
Three-level scheduling

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 9

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 10

4.a Concepts of Scheduling
Purpose of CPU scheduling

Why scheduling matters: user service response
example: choosing between

a process that updates the screen after the user has
closed a window
a process that sends out queued email

taking 2 seconds to close the window while sending the email
would be unacceptable
on the other hand, delaying the email while closing the window
would hardly be noticed

→ schedule wisely to match user’s expectations

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 11

4.a Concepts of Scheduling
Purpose of CPU scheduling

Why scheduling matters: CPU usage
switching processes (contexts) is heavy

switch from user mode to kernel mode
CPU state must be saved
process state must be saved
pages and page bits must be saved
MMU must be reloaded with new page table
etc.

→ to maximize CPU utilization, interleave but at the same time
minimize process switches

4.a Concepts of Scheduling
Purpose of CPU scheduling

Types of process behavior: CPU-I/O burst cycle
processes alternate CPU usage with I/O wait

compute-bound processes have long CPU bursts and
infrequent I/O
I/O-bound processes have short CPU bursts and frequent I/O

(a) Compute-bound process vs. (b) I/O-bound process

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 12

4.a Concepts of Scheduling
Purpose of CPU scheduling

Typical histogram of CPU-burst timesSilberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

Types of process behavior: CPU-I/O burst cycle
power-law: large # of short CPU bursts, small # of large bursts

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 13

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 14

4.a Concepts of Scheduling
Purpose of CPU scheduling

I/O-bound processes
as CPU speeds increase, processes generally tend to become
more and more I/O-bound
the scheduling of I/O-bound processes will likely become an
important subject in the future

→ basic idea: an I/O-bound process that is “Ready” to run should
get the CPU quickly so it can keep the disk busy

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 15

4.a Concepts of Scheduling
Purpose of CPU scheduling

When to schedule a new process
when a process is created — run the child or the parent?
when a process exits — who’s next?
when an I/O interrupt occurs upon finishing an I/O task —
should the waiting process be rescheduled right away? or let
the currently running process continue? or pick another
process? etc.

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 16

4.a Concepts of Scheduling
Purpose of CPU scheduling

Two kinds of CPU-scheduling algorithms
cooperative scheduling — let a process run until it blocks
on I/O, terminates or voluntarily releases the CPU (system call)

Ready Running

Blocked

Ready Running

Blocked

preemptive scheduling — follow clock interrupts (ex: 50Hz)
to forcibly switch processes (demote the “Running” to “Ready”)

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 17

4.a Concepts of Scheduling
Purpose of CPU scheduling

Scheduling algorithm goals
fairness — comparable processes get comparable service
compliance to system’s policy — ex: high-priority
override low-priority processes (ex: safety control vs. payroll in
a nuclear plant)
keep system busy — CPU and I/O devices should be
utilized fully

if all CPU-bound were run first: fight for CPU, I/O idle
then all I/O-bound were run: fight for I/O, CPU idle

→ keep a well-balanced mix of CPU-bound and I/O-bound
processes, so they can fill in for each other

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 18

4.a Concepts of Scheduling
Purpose of CPU scheduling

Scheduling algorithm goals — batch systems
throughput — maximize # of completed jobs per time unit
turnaround time (latency) — minimize time between
submission and termination of job

high throughput and low turnaround are rarely compatible
for ex: supply of short jobs scheduled in front of long jobs:
good throughput, bad turnaround time for long jobs

#5 executed

throughput

turnaround time for #5

#5 arrived
Arrival times

Execution times

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 19

4.a Concepts of Scheduling
Purpose of CPU scheduling

Scheduling algorithm goals — interactive systems
response time — respond to requests quickly: minimize
time between issuing command and getting result

ex: a user request to start a new program should take
precedence over background work
having interactive requests go first will be perceived as
good service

proportionality time — meet users’ expectation, even if
irrational

ex: 45 seconds to establish a modem connection is
commonly perceived as acceptable
but 45 seconds to hang up is not (although similar task)

4.a Concepts of Scheduling
Purpose of CPU scheduling

Scheduling algorithm goals — summary

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Some goals of CPU scheduling under different circumstances
10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 20

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 21

Principles of Operating Systems
CS 446/646

4. CPU Scheduling
a. Concepts of Scheduling

Three-level scheduling
Purpose of CPU scheduling

b. Scheduling Algorithms

c. Queuing Analysis

d. Thread Scheduling

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 22

Principles of Operating Systems
CS 446/646

4. CPU Scheduling
a. Concepts of Scheduling

b. Scheduling Algorithms
Scheduling in batch systems
Scheduling in interactive systems

c. Queuing Analysis

d. Thread Scheduling

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 23

4.b Scheduling Algorithms
Scheduling in batch systems

Scheduling metrics
arrival time ta = time the process became “Ready” (again)
wait time Tw = time spent waiting for CPU
service time Ts = time spent executing in CPU
turnaround time Tr = total time spent waiting and executing

#5 executed
Tr

#5 arrived
Arrival times

Execution times

= Tw + Ts

TsTw

Tr / Ts = 2.5

ta

A B C D E Mean

FCFS scheduling policy

First-Come-First-Served (FCFS)
processes are assigned the CPU in the order they request it
when the running process blocks, the first “Ready” is run next
when a process gets “Ready”, it is put at the end of the queue

4.b Scheduling Algorithms
Scheduling in batch systems

A
B

C
D

E

Arrival times

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 24

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 25

4.b Scheduling Algorithms
Scheduling in batch systems

First-Come-First-Served (FCFS)
nonpreemptive, oldest and simplest to program
apparently “fair” but very inefficient; example:

a CPU-bound process runs 1 sec, then reads 1 disk block
several I/O-bound processes run little CPU, but must read
1000 disk blocks

1 sec

because of the CPU-bound, one I/O-bound will take 1000 seconds

CPU-bound

I/O-bound
processes

. . .

→ preempt the CPU-bound more often to let the I/O-bound progress

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 26

4.b Scheduling Algorithms
Scheduling in batch systems

by preempting the CPU-bound every 10ms (100 Hz), each I/O-bound now
takes only 10 seconds (without bothering the CPU-bound too much ~10s)

CPU-bound

I/O-bound
processes . . .

interleaving’s squeeze

→ see preemptive algorithms (Round-Robin, etc.) in later sections

A
B

C
D

E

Arrival times

SJF scheduling policy

Shortest Job First (SJF)
nonpreemptive, assumes the run times are known in advance
among several equally important “Ready” jobs (or CPU bursts),
the scheduler picks the one that will finish the earliest

4.b Scheduling Algorithms
Scheduling in batch systems

Shortest Job
First (SJF)

A B C D E MeanSJF

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 27

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 28

4.b Scheduling Algorithms
Scheduling in batch systems

Shortest Job First (SJF)
example:

a) turnaround times Tr = 8, 12, 16, 20 → mean Tr = 14
b) turnaround times Tr = 4, 8, 12, 20 → mean Tr = 11

no SJF SJF

SJF is optimal among jobs available immediately; proof:
generally, with service times Ts = a, b, c, d the mean
turnaround time is: Tr = (4a + 3b + 2c + d) / 4, therefore it
is always better to schedule the longest process (d) last

however, because of no-preemption, SJF is not dealing well
with jobs arriving subsequently

A B C D E Mean

SRT scheduling policy

Shortest Remaining Time (SRT)
preemptive version of SJF, also assumes known run time
choose the process whose remaining run time is shortest
allows new short jobs to get good service

4.b Scheduling Algorithms
Scheduling in batch systems

A
B

C
D

E

Arrival times

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 29

A B C D E Mean

A
B

C
D

E

Arrival times

RR (q = 1) scheduling policy

Round-Robin (RR)
preemptive FCFS, based on a time interval, the quantum q
a running process is interrupted by the clock (timed out) and
transitioned to the “Ready” state; another “Ready” process is run

4.b Scheduling Algorithms
Scheduling in interactive systems

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 30

A B C D E Mean

A
B

C
D

E

Arrival times

RR (q = 4) scheduling policy

Round-Robin (RR)
a crucial parameter is the quantum q (generally ~10–100ms)

q should be big compared to context switch latency (~10µs)
q should be less than the longest CPU bursts, otherwise RR
degenerates to FCFS → typically at 80% of the distrib. tail

4.b Scheduling Algorithms
Scheduling in interactive systems

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 31

A
B

C
D

E

Arrival times

SPN scheduling policy

Shortest Process Next (SPN)
equivalent to SJF: pick the one that should finish the earliest

→ difference in an interactive system: base the prediction about
future duration upon the past durations

4.b Scheduling Algorithms
Scheduling in interactive systems

Shortest Process
Next (SPN)

A B C D E Mean

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 32

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 33

4.b Scheduling Algorithms
Scheduling in interactive systems

Estimation of processing time from past
simple averaging

S(n + 1) = (1 / n) ∑ T(i)
⇔ S(n + 1) = T(n) / n + (1 – 1/ n) S(n)

exponential averaging, also called “aging”
S(n + 1) = α T(n) + (1 – α) S(n), 0 < α ≤ 1
high α forgets past runs quickly
low α remembers past runs for a long time

Estimation of processing time from past
“aging” tracks changes in process behavior faster than the mean

4.b Scheduling Algorithms
Scheduling in interactive systems

Example of exponential averaging in duration estimation Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 34

HRRN scheduling policy

Highest Response Ratio Next (HRRN)
minimize the normalized turnaround time Tr / Ts

→ compromise between FCFS, which favors long processes, and
SPN, which favors short processes

4.b Scheduling Algorithms
Scheduling in interactive systems

A B C D E Mean

A
B

C
D

E

Arrival times

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 35

Priority queuing

Priority Scheduling
several “Ready” process queues, with different priorities

4.b Scheduling Algorithms
Scheduling in interactive systems

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 36

Multilevel queue scheduling

Priority Scheduling
processes are assigned to queues based on their properties
(memory size, priority, bound type, etc.)

4.b Scheduling Algorithms
Scheduling in interactive systems

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 37

Priority queuing

Priority Scheduling with Feedback (FB)
processes can be moved among queues
each queue has its own policy, generally RR with variable q(Qi)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

4.b Scheduling Algorithms
Scheduling in interactive systems

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 38

A
B

C
D

E

Arrival times

FB (q = 1) scheduling policy

Priority Scheduling with Feedback (FB)
each time a process is preempted, it is demoted to a lower-
level queue
tends to leave I/O-bound in higher priority queues, as desired

A B C D E Mean

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

4.b Scheduling Algorithms
Scheduling in interactive systems

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 39

A
B

C
D

E

Arrival times

FB (q = 2i) scheduling policy

Priority Scheduling with Feedback (FB)
a uniform RR quantum for all queues might create starvation
to compensate for increasing wait times in lower queue,
increase q, too; for example q = 2i

A B C D E Mean

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

4.b Scheduling Algorithms
Scheduling in interactive systems

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 40

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 41

4.b Scheduling Algorithms
Scheduling in interactive systems

St
all

ing
s,

W
. (

20
04

) O
pe

ra
tin

g
Sy

ste
m

s:
In

te
rn

als
 a

nd
 D

es
ign

 P
rin

cip
les

 (5
th

 E
dit

ion
).

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 42

4.b Scheduling Algorithms
Scheduling in interactive systems

Traditional UNIX scheduling
multilevel feedback using RR within each of the priority queues
typically 1-second preemption timeout
system of integer priorities recomputed once per second
a base priority divides processes into fixed bands of priority
levels; in decreasing order:

swapper
block I/O device control
file manipulation
character I/O device control
user processes

10/25-27/2005 CS 446/646 - Principles of Operating Systems - 4. CPU Scheduling 43

Principles of Operating Systems
CS 446/646

4. CPU Scheduling
a. Concepts of Scheduling

b. Scheduling Algorithms
Scheduling in batch systems
Scheduling in interactive systems

c. Queuing Analysis

d. Thread Scheduling

