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Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency
9 Types of process interaction
9 Race conditions & critical regions
9 Mutual exclusion by busy waiting
9 Mutual exclusion & synchronization

� mutexes
� semaphores
� monitors
� message passing

d. Deadlocks
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2.c  Concurrency
Types of process interaction

¾ Concurrency refers to any form of interaction among 
processes or threads
9 concurrency is a fundamental part of O/S design
9 concurrency includes

� communication among processes/threads
� sharing of, and competition for system resources
� cooperative processing of shared data
� synchronization of process/thread activities
� organized CPU scheduling
� solving deadlock and starvation problems
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2.c  Concurrency
Types of process interaction

¾ Concurrency arises in the same way at different levels 
of execution streams
9 multiprogramming — interaction between multiple processes 

running on one CPU (pseudoparallelism)
9 multithreading — interaction between multiple threads 

running in one process
9 multiprocessors — interaction between multiple CPUs 

running multiple processes/threads (real parallelism)
9 multicomputers — interaction between multiple computers 

running a distributed processes/threads
→ the principles of concurrency are basically the same in all of 

these categories (possible differences will be pointed out)
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2.c  Concurrency
Types of process interaction

9 processes unaware of each other
— they must use shared resources 
independently, without interfering, 
and leave them intact for the others

P1 P2

resource

9 processes indirectly aware of each 
other — they work on common data 
and build some result together via 
the data (“stigmergy” in biology)

P2P1

data

9 processes directly aware of each 
other — they cooperate by 
communicating, e.g., exchanging 
messages

P2P1

messages

¾ Whether processes or threads: three basic interactions



¾ Inconsequential race condition in the shopping scenario
9 there is a “race condition” if the outcome depends on the order of 

the execution 

Multithreaded shopping diagram and possible outputs

> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

2.c  Concurrency
Race conditions & critical regions
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2.c  Concurrency
Race conditions & critical regions

CPU

CPU

¾ Inconsequential race condition in the shopping scenario
9 the outcome depends on the CPU scheduling or “interleaving” of 

the threads (separately, each thread always does the same thing)
> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

A

B
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> ./multi_shopping
grabbing the milk...
grabbing the butter...
grabbing the salad...
grabbing the cheese...
grabbing the apples...
>
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2.c  Concurrency
Race conditions & critical regions

¾ Inconsequential race condition in the shopping scenario
9 the CPU switches from one process/thread to another, possibly 

on the basis of a preemptive clock mechanism 
> ./multi_shopping
grabbing the salad...
grabbing the milk...
grabbing the apples...
grabbing the butter...
grabbing the cheese...
>

A

B

sa
la
d

ap
pl
es

mi
lk

bu
tt
er

ch
ee
se

CPU

thread A

thread B

salad

milk

apples

butter cheese

Thread view expanded in real execution time
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2.c  Concurrency
Race conditions & critical regions

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

> ./echo
Hello world!
Hello world!

Single-threaded echo Multithreaded echo (lucky)

> ./echo
Hello world!
Hello world!

1
2
3

4
5
6

lucky
CPU

scheduling

☺

¾ Consequential race conditions in I/O & variable sharing
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2.c  Concurrency
Race conditions & critical regions

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

char chin, chout;

void echo()
{
do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

¾ Consequential race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

/

Multithreaded echo (unlucky)

> ./echo
Hello world!
ee....
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2.c  Concurrency
Race conditions & critical regions

void echo()
{
char chin, chout;

do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

B

void echo()
{
char chin, chout;

do {
chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

¾ Consequential race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

/

Multithreaded echo (unlucky)

> ./echo
Hello world!
eH....

changed
to local

variables



9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 98

2.c  Concurrency
Race conditions & critical regions

¾ Consequential race conditions in I/O & variable sharing
9 note that, in this case, replacing the global variables with local 

variables did not solve the problem
9 we actually had two race conditions here:

� one race condition over assigning values to shared 
variables 

� another race condition over which thread is going to write 
to output first; this one persisted even after making the 
variables local to each thread

→ generally, problematic race conditions may occur whenever 
resources and/or data are shared (by processes unaware of 
each other or processes indirectly aware of each other) 
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2.c  Concurrency
Race conditions & critical regions

¾ How to avoid race conditions?
9 find a way to keep the instructions together
9 this means actually reverting from too much interleaving and 

going back to “indivisible” blocks of execution!

thread A

thread B

chin='H'

chin='e'

putchar('e')

chout='e' putchar('e')

(a) too much interleaving may create race conditions

(b) keeping “indivisible” blocks of execution avoids race conditions  

thread A

thread B

chin='H'

chin='e'

putchar('H')

chout='e' putchar('e')
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2.c  Concurrency
Race conditions & critical regions

¾ The “indivisible” execution blocks are critical regions
9 a critical region is a section of code that may be executed by 

only one process or thread at a time

B
A

common critical region

B
A A’s critical region

B’s critical region

9 although it is not necessarily the same region of memory or 
section of program in both processes

→ but physically different or not, what matters is that these regions 
cannot be interleaved or executed in parallel (pseudo or real)
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2.c  Concurrency
Race conditions & critical regions

¾ We need mutual exclusion from critical regions

enter critical region?

exit critical region

enter critical region?

exit critical region

9 critical regions can be protected from concurrent access by 
padding them with entrance and exit mechanisms (we’ll see 
how later): a thread must try to check in, then it must check out 

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

BA

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}
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2.c  Concurrency
Race conditions & critical regions

Chart of mutual exclusion

1. mutual exclusion inside — only one 
process at a time may be allowed in a 
critical region

2. no exclusion outside — a process stalled 
in a noncritical region may not exclude 
other processes from their critical regions

3. no indefinite occupation — a critical 
region may be only occupied for a finite 
amount of time
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2.c  Concurrency
Race conditions & critical regions

Chart of mutual exclusion (cont’d)

4. no indefinite delay when excluded — a 
process may be only excluded for a finite 
amount of time (no deadlock or starvation)

5. no delay when not excluded — a critical 
region free of access may be entered 
immediately by a process

6. nondeterministic scheduling — no 
assumption should be made about the 
relative speeds of processes
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2.c  Concurrency
Mutual exclusion by busy waiting

critical region
1. thread A reaches the gate 

to the critical region (CR) 
before B

2. thread A enters CR first, 
preventing B from entering 
(B is waiting or is blocked)

3. thread A exits CR; thread 
B can now enter

4. thread B enters CR

¾ Desired effect: mutual exclusion from the critical region

B
A

B
A

B
A

B
A

H
O

W
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 th
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ed

??
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 0 — disabling hardware interrupts

critical region

B

1. thread A reaches the gate 
to the critical region (CR) 
before B

2. as soon as A enters CR, it 
disables all interrupts, thus 
B cannot be scheduled 

3. as soon as A exits CR, it 
reenables interrupts; B can 
be scheduled again

4. thread B enters CR

B
A

B
A

A

B
A
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 0 — disabling hardware interrupts  '
9 it works, but it is foolish
9 what guarantees that the user 

process is going to ever exit the 
critical region?

9 meawhile, the CPU cannot 
interleave any other task, even 
unrelated to this race condition

9 the critical region becomes one 
physically indivisible block, not 
logically

9 also, this is not working in multi-
processors

disable hardware interrupts

reenable hardware interrupts

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 1 — simple lock variable

critical region
1. thread A reaches CR and 

finds a lock at 0, which 
means that A can enter

2. thread A sets the lock to 1 
and enters CR, which 
prevents B from entering

3. thread A exits CR and 
resets lock to 0; thread B 
can now enter

4. thread B sets the lock to 1 
and enters CR

B
A

B
A

B
A

B
A
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2.c  Concurrency
Mutual exclusion by busy waiting

test lock,  then set lock

reset lock

¾ Implementation 1 — simple lock variable
9 the “lock” is a shared variable
9 entering the critical region means 

testing and then setting the lock
9 exiting means resetting the lock

bool lock = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

while (lock);
/* do nothing: loop */

lock = TRUE;

lock = FALSE;



9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 109

2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 1 — simple lock variable  '
1. thread A reaches CR and 

finds a lock at 0, which 
means that A can enter

1.1 but before A can set the 
lock to 1, B reaches CR 
and finds the lock is 0, too

1.2 A sets the lock to 1 and 
enters CR but cannot 
prevent the fact that . . .

1.3 . . . B is going to set the 
lock to 1 and enter CR, too

critical regionB
A

B
A

B
A

B
A
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2.c  Concurrency
Mutual exclusion by busy waiting

test lock,  then set lock

reset lock

¾ Implementation 1 — simple lock variable  '
9 suffers from the very fatal flaw we 

want to avoid: a race condition
9 the problem comes from the small 

gap between testing that the lock 
is off and setting the lock
while (lock);   lock = TRUE;

9 it may happen that the other 
thread gets scheduled exactly 
inbetween these two actions (falls 
in the gap)

9 so they both find the lock off and 
then they both set it and enter

bool lock = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 2 — “indivisible” lock variable  &
1. thread A reaches CR and 

finds the lock at 0 and sets 
it in one shot, then enters

1.1’ even if B comes right 
behind A, it will find that 
the lock is already at 1

2. thread A exits CR, then 
resets lock to 0

3. thread B finds the lock at 0 
and sets it to 1 in one shot, 
just before entering CR

critical regionB
A

B
A

B
A

B
A



test-and-set-lock

set lock off

¾ Implementation 2 — “indivisible” lock variable  &
9 the indivisibility of the “test-lock-

and-set-lock” operation can be 
implemented with the hardware 
instruction TSL

2.c  Concurrency
Mutual exclusion by busy waiting

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

TSL

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 2 — “indivisible” lock ⇔ one key  &
1. thread A reaches CR and 

finds a key and takes it

1.1’ even if B comes right 
behind A, it will not find a 
key

2. thread A exits CR and puts 
the key back in place

3. thread B finds the key and 
takes it, just before 
entering CR

critical regionB
A

B
A

B
A

B
A
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2.c  Concurrency
Mutual exclusion by busy waiting

take key and run

return key

¾ Implementation 2 — “indivisible” lock ⇔ one key  &
9 “holding” a unique object, like a 

key, is an equivalent metaphor for 
“test-and-set”

9 this is similar to the “speaker’s 
baton” in some assemblies: only 
one person can hold it at a time

9 holding is an indivisible action: 
you see it and grab it in one shot

9 after you are done, you release 
the object, so another process 
can hold on to it

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}



9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 115

2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 3 — TSL-free toggle for two threads
1. thread A reaches CR, finds 

a lock at 0, and enters 
without changing the lock

2. however, the lock has an 
opposite meaning for B: 
“off” means do not enter

3. only when A exits CR does 
it change the lock to 1; 
thread B can now enter

4. thread B sets the lock to 1 
and enters CR: it will reset 
it to 0 for A after exiting

critical regionB
A

B
A

B
A

B
A
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2.c  Concurrency
Mutual exclusion by busy waiting

test toggle

switch toggle

¾ Implementation 3 — TSL-free toggle for two threads
9 the “toggle lock” is a shared 

variable used for strict alternation
9 here, entering the critical region 

means only testing the toggle: it 
must be at 0 for A, and 1 for B

9 exiting means switching the 
toggle: A sets it to 1, and B to 0

bool toggle = FALSE;

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

toggle = TRUE; toggle = FALSE;

while (toggle);
/* loop */

while (!toggle);
/* loop */

A’s code B’s code
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 3 — TSL-free toggle for two threads  '
5. thread B exits CR and 

switches the lock back to 0 
to allow A to enter next

5.1 but scheduling happens to 
make B faster than A and 
come back to the gate first

5.2 as long as A is still busy, 
slow or interrupted in its 
noncritical region, B is 
barred access to its CR

→ this violates item 2. of the 
chart of mutual exclusion

B
A

B
A

B
A

→ this implementation avoids TSL by 
splitting test & set and putting them 
in enter & exit; nice try... but flawed!
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 4 — Peterson’s no-TSL, no-alternation
1. A and B each have their 

own lock; an extra toggle 
is also masking either lock

2. A arrives first, sets its lock, 
pushes the mask to the 
other lock and may enter

3. then, B also sets its lock & 
pushes the mask, but must 
wait until A’s lock is reset  

4. A exits the CR and resets 
its lock; B may now enter

critical regionB
A

B
A

B
A

B
A
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2.c  Concurrency
Mutual exclusion by busy waiting

set lock, push mask, and test

reset lock

¾ Implementation 4 — Peterson’s no-TSL, no-alternation
9 the mask & two locks are shared
9 entering means: setting one’s 

lock, pushing the mask and 
tetsing the other’s combination

9 exiting means resetting the lock

bool lock[2];
int mask;
int A = 0, B = 1;
void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}
lock[A] = FALSE; lock[B] = FALSE;

lock[A] = TRUE;
mask = B;
while (lock[B] &&

mask == B);
/* loop */

lock[B] = TRUE;
mask = A;
while (lock[A] &&

mask == A);
/* loop */

A’s code B’s code
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Implementation 4 — Peterson’s no-TSL, no-alternation&
1. A and B each have their 

own lock; an extra toggle 
is also masking either lock

2.1 A is interrupted between 
setting the lock & pushing 
the mask; B sets its lock

2.2 now, both A and B race to 
push the mask: whoever 
does it last will allow the 
other one inside CR

→ mutual exclusion holds!! 
(no bad race condition)

critical regionB
A

B
A

B
A

B
A

pushed last, allowing A

pushed last, allowing B
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Summary of these implementations of mutual exclusion

this will be the
basis for “mutexes”

9 Impl. 0 — disabling hardware interrupts
' NO: race condition avoided, but can crash the system!

9 Impl. 1 — simple lock variable (unprotected)
' NO: still suffers from race condition

9 Impl. 2 — indivisible lock variable (TSL)
& YES: works, but requires hardware

9 Impl. 3 — TSL-free toggle for two threads
' NO: race condition avoided inside, but lockup outside

9 Impl. 4 — Peterson’s no-TSL, no-alternation
& YES: works in software, but processing overhead
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2.c  Concurrency
Mutual exclusion by busy waiting

¾ Problem?¾ Problem: all implementations (1-4) rely on busy waiting
9 “busy waiting” means that the process/thread continuously 

executes a tight loop until some condition changes
9 busy waiting is bad:

� waste of CPU time — the busy process is not doing 
anything useful, yet remains “Ready” instead of “Blocked”

� paradox of inversed priority — by looping indefinitely, a 
higher-priority process B may starve a lower-priority 
process A, thus preventing A from exiting CR and . . . 
liberating B! (B is working against its own interest)

→ we need for the waiting process to block, not keep idling



¾ Implementation 2’ — indivisible blocking lock = mutex
9 a mutex is a safe lock variable with 

blocking, instead of tight looping
9 if TSL returns 1, then voluntarily 

yield the CPU to another thread

2.c  Concurrency
Mutual exclusion & synchronization — mutexes

test-and-set-lock  or BLOCK

set lock off

void echo()
{

char chin, chout;
do {

chin = getchar();
chout = chin;
putchar(chout);

}
while (...);

}

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

¾ Difference between busy waiting and blocked
9 in busy waiting, the PC is always 

looping (increment & jump back)
9 it can be preemptively interrupted 

but will loop again tightly whenever 
rescheduled → tight polling Blocked

Ready
dispatch

event wait
(block)

event occurs
(unblock)

timeout

Running

9 when blocked, the process’s PC 
stalls after executing a “yield” call

9 either the process is only timed 
out, thus it is “Ready” to loop-
and-yield again → sparse polling

9 or it is truly “Blocked” and put in 
event queue → condition waiting

Running
dispatch

voluntary
event wait

(block)

event occurs
(unblock)

voluntary
timeout

Blocked

Ready



2.c  Concurrency
Mutual exclusion & synchronization — mutexes

A common counter for two threads

¾ Illustration of mutex use: shared word counter
9 we want to count the total number of words in 2 files
9 we use 1 global counter variable and 2 threads: each thread 

reads from a different file and increments the shared counter 

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

int total_words;

void main(...)
{

...declare, initialize...
pthread_create(&th1, NULL, count_words, (void *)filename1);
pthread_create(&th2, NULL, count_words, (void *)filename2);
pthread_join(th1, NULL);
pthread_join(th2, NULL);
printf("total words = %d", total_words);

}

void *count_words(void *filename)
{

...open file...
while (...get next char...) {

if (...char is not alphanum & previous char is alphanum...) {
total_words++;

}
...... total_words = total_words + 1;

is not necessarily atomic! (depends on 
machine code and stage of execution)

Multithreaded shared counter with possible race condition



2.c  Concurrency
Mutual exclusion & synchronization — mutexes

Two threads race to increment the counter

¾ A race condition can occur when incrementing counter
9 if not atomic, the increment block of thread 1, “get1-add1” may 

be interleaved with the increment block of thread 2, “get2-add2” 
to produce “get1-get2-add1-add2” or “get1-get2-add2-add1”

→ this results in missing one count

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

protect the critical region 
with mutual exclusion

int total_words;
pthread_mutex_t counter_lock = PTHREAD_MUTEX_INITIALIZER;

void main(int ac, char *av[])
{

...declare, initialize...
pthread_create(&th1, NULL, count_words, (void *)filename1);
pthread_create(&th2, NULL, count_words, (void *)filename2);
pthread_join(th1, NULL);
pthread_join(th2, NULL);
printf("total words = %d", total_words);

}

void *count_words(void *filename)
{

...open file...
while (...get next char...) {

if (...char is not alphanum & previous char is alphanum...) {
pthread_mutex_lock(&counter_lock);
total_words++;
pthread_mutex_unlock(&counter_lock);

}
......

Mulithreaded shared counter with mutex protection
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

¾ System calls for thread exclusion with mutexes
9 err = pthread_mutex_lock(pthread_mutex_t *m)

locks the specified mutex
� if the mutex is unlocked, it becomes locked and owned 

by the calling thread
� if the mutex is already locked by another thread, the 

calling thread is blocked until the mutex is unlocked 

9 err = pthread_mutex_unlock(pthread_mutex_t *m)

releases the lock on the specified mutex
� if there are threads blocked on the specified mutex, one 

of them will acquire the lock to the mutex
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

¾ Real-world mutex use: the producer/consumer problem
9 producer — generates data items and places them in a buffer
9 consumer — takes the items out of the buffer to use them

consumer
producer

9 example 1: a print program produces characters that are 
consumed by a printer

9 example 2: an assembler produces object modules that are 
consumed by a loader



9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 131

2.c  Concurrency
Mutual exclusion & synchronization — mutexes

¾ Unbounded buffer, 1 producer, 1 consumer
9 in modified only by producer and out only by consumer
9 no race condition; no need for mutexes, just a while loop  

void consumer()
{
while (true) {

while (out == in);

item = b[out];
out++;    

consume(item);
}

}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;

}
}

item[] b;
int in, out;
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

9 out shared by all consumers → mutex among consumers
9 producer not concerned: can still add items to buffer at any time

lock(out_mutex);

unlock(out_mutex);

mutex out_mutex;

void consumer()
{
while (true) {

while (out == in);

item = b[out];
out++;    

consume(item);
}

}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;

}
}

item[] b;
int in, out;

but this implementation is flawed: all 
consumers pass the “while” at once, 
end up waiting at lock, then enter 
even if buffer is empty . . .

¾ Unbounded buffer, 1 producer, N consumers
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

¾ Unbounded buffer, 1 producer, N consumers

void consumer()
{
while (true) {

lock(out_mutex);
while (out == in);
item = b[out];
out++;
unlock(out_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;

}
}

item[] b;
int in, out;

9 out shared by all consumers → mutex among consumers
9 producer not concerned: can still add items to buffer at any time

this implementation is correct: even if 
a consumer loops inside, it means the 
buffer is empty anyway, so the others 
may as well be blocked outside . . .

mutex out_mutex;
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2.c  Concurrency
Mutual exclusion & synchronization — mutexes

¾ Unbounded buffer, N producers, N consumers

void consumer()
{
while (true) {

lock(out_mutex);
while (out == in);
item = b[out];
out++;
unlock(out_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();
lock(in_mutex);
b[in] = item;
in++;
unlock(in_mutex);

}
}

item[] b;
int in, out;

9 in shared by all producers → other mutex among producers
9 consumers and producers still (relatively) independent

still correct, but in all cases the 
consumers are busy waiting . . .

mutex out_mutex;
mutex in_mutex;
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

¾ Synchronization
9 processes can also cooperate by means of simple signals, 

without defining a “critical region”
9 like mutexes: instead of looping, a process can block in some 

place until it receives a specific signal from the other process

¾ Binary semaphore ⇔ mutex
9 a binary semaphore is a variable that has a value 0 or 1
9 a wait operation attempts to decrement the semaphore

� 1 → 0 and goes through;    0 → blocks
9 a signal operation attempts to increment the semaphore

� 1 → 1, no change;    0 → unblocks or becomes 1



¾ Binary semaphore ⇔ mutex

2.c  Concurrency
Mutual exclusion & synchronization — semaphores

value = 1 (“off”)
no queue

signal signal signal signal
signal

value = 0
1 in queue

wait

value = 0
2 in queue

wait

. . .

value = 0
3 in queue

wait

value = 0 (“on”)
no queue

wait
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

void consumer()
{
while (true) {

while (out == in);
if (out == in)

wait(Bsem);
item = b[out];
out++;    

consume(item);
}

}

void producer()
{
while (true) {

item = produce();

b[in] = item;
in++;
if (out == in–1)

signal(Bsem);
}

}

item[] b;                          bin_semaphore Bsem = 0;
int in, out;

¾ Unbounded buffer, 1 producer, 1 consumer with sync
9 if buffer is empty, the consumer waits on a semaphore
9 if buffer just got one item, the producer signals to the consumer

unfortunately, this can lead to an 
inconsistent semaphore state . . .



9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 138

2.c  Concurrency
Mutual exclusion & synchronization — semaphores

value = 0
no queue

out

in

value = 0
no queue

x = produce();
b[in++] = x;1.

value = 0
no queue

x = b[out++];
consume(x);2.

value = 0
1 in queue

x = b[out++];
consume(x);
wait(sem);

3.
empty →

value = 1
1 in queue

value = 0
no queue

transitory state

x = produce();
b[in++] = x;
signal(sem);

4.
one item →
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

value = 0
no queue

value = 0
no queue

x = b[out++];
consume(x);3.’

value = 1
no queue

x = produce();
b[in++] = x;
signal(sem);

4.’

wait(sem);
5.’

value = 0
no queue

x = b[out++];
consume(x);
wait(sem); →

NOT
empty →

now
empty →
. . . but goes through

6.’ x = b[out++];
consume(x);

??

→ the last “signal” was not matched by 
a prior “wait”: they missed each other
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

void consumer()
{
while (true) {

lock(buf_mutex);
if (out == in)

wait(Bsem);
item = b[out];
out++;    
unlock(buf_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();
lock(buf_mutex);
b[in] = item;
in++;
if (out == in–1)

signal(Bsem);
unlock(buf_mutex);

}
}

item[] b;                          bin_semaphore Bsem = 0;
int in, out;

¾ Unbounded buffer, 1 producer, 1 consumer with sync
9 we need to create critical areas to keep “consuming” and 

“checking the semaphore” together

but there is a deadlock: here the consumer is 
blocking the producer, not other consumers . . .
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

¾ Unbounded buffer, 1 producer, 1 consumer with sync
9 the consumer needs to remember the current state of in & 

out, so it can exit the CR before checking the semaphore 

void consumer()
{
while (true) {

if (out == in0)
wait(Bsem);

lock(buf_mutex);
item = b[out];
out++; in0 = in;
unlock(buf_mutex);
consume(item);

}
}

void producer()
{
while (true) {

item = produce();
lock(buf_mutex);
b[in] = item;
in++;
if (out == in–1)

signal(Bsem);
unlock(buf_mutex);

}
}

item[] b;                          bin_semaphore Bsem = 0;
int in, out;

finally correct!
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

¾ Semaphores are used for signaling between processes
9 semaphores can be used for mutual exclusion
9 binary semaphores are the same as mutexes
9 integer semaphores can be used to allow more than one 

process inside a critical region; generally:
� the positive value of an integer semaphore corresponds to 

a maximum number of processes allowed concurrently 
inside a critical region

� the negative value of an integer semaphore corresponds to 
the number of processes currently waiting in the queue

9 binary and integer semaphores can also be used for 
synchronization



¾ Integer semaphore ⇔ “thermometer”

2.c  Concurrency
Mutual exclusion & synchronization — semaphores

value = +2
no queue

value = –1
1 in queue

wait

0

. . .

value = –2
2 in queue

wait

00

value = 0
no queue

wait

0

value = +1
no queue

wait

0

signal signal signal signal
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

Example of semaphore mechanism

¾ All semaphores maintain a queue of waiting processes

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

¾ Producer/consumer with an integer semaphore
9 no need for a condition: the semaphore itself keeps track of the

size of the buffer

void producer()
{
while (true) {

item = produce();
lock(buf_mutex);
b[in] = item;
in++;
if (out == in–1)

signal(sem);
unlock(buf_mutex);

}
}

item[] b;                          semaphore sem = 0;
int in, out;

correct!

void consumer()
{
while (true) {

if (out == in0)
wait(sem);

lock(buf_mutex);
item = b[out];
out++;
unlock(buf_mutex);
consume(item);

}
}
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

value = +1
no queue

x = produce();
b[in++] = x;
signal(sem);

4.’

wait(sem);
5.’ value = 0

no queue

value = –1
1 in queue

x = b[out++];
consume(x);
wait(sem);

6.’ x = b[out++];
consume(x);

the consumer is blocked, as it should be; the producer may proceed . . .

value = 0
no queue

x = b[out++];
consume(x);

3.’
wait(sem);

value = +1
no queue



¾ How semaphores may be implemented

2.c  Concurrency
Mutual exclusion & synchronization — semaphores

Two possible implementations of semaphores
Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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2.c  Concurrency
Mutual exclusion & synchronization — semaphores

¾ Bounded buffer, 1 producer, 1 consumer with sync
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2.c  Concurrency
Mutual exclusion & synchronization — monitors

¾ A monitor is a language-level encapsulation construct
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2.c  Concurrency
Mutual exclusion & synchronization — monitors

¾ Producer/consumer problem with monitors
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2.c  Concurrency
Mutual exclusion & synchronization — message passing

¾ Message passing: senders, receivers and mailboxes
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2.c  Concurrency
Mutual exclusion & synchronization — message passing

¾ Producer/consumer problem with message passing
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Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency
9 Types of process interaction
9 Race conditions & critical regions
9 Mutual exclusion by busy waiting
9 Mutual exclusion & synchronization

� mutexes
� semaphores
� monitors
� message passing

d. Deadlocks
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Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks
9 Deadlock principles: diagrams and graphs
9 Deadlock prevention: changing the rules
9 Deadlock avoidance: optimizing the allocation
9 Deadlock detection: recovering after the facts



2.d  Deadlocks
Deadlock principles: diagrams and graphs

Illustration of a deadlock

¾ A deadlock is a permanent blocking of a set of threads
9 a deadlock can happen while threads/processes are competing 

for system resources or communicating with each other
9 there is no universal efficient solution against deadlocks

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

Competing processes

¾ Illustration of a deadlock
9 two processes, P and Q, compete for two resources, A and B
9 each process needs exclusive use of each resource

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

Happy scheduling 1

¾ Illustration of a deadlock — scheduling path 1 ☺
9 Q executes everything before P can ever get A
9 when P is ready, resources A and B are free and P can proceed 

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

Happy scheduling 2

¾ Illustration of a deadlock — scheduling path 2 ☺
9 Q gets B and A, then P is scheduled; P wants A but is blocked by

A’s mutex; so Q resumes and releases B and A; P can now go

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

Bad scheduling → deadlock

¾ Illustration of a deadlock — scheduling path 3 /
9 Q gets only B, then P is scheduled and gets A; now both P and 

Q are blocked, each waiting for the other to release a resource

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Get B
...
Release A
...
Release B
...

deadlock
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

Joint progress diagram

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

¾ Deadlocks depend on the program and the scheduling
9 program design

� the order of the statements in the 
code creates the “landscape” of 
the joint progress diagram

� this landscape may contain gray 
“swamp” areas leading to deadlock

9 scheduling condition
� the interleaved dynamics of 

multiple executions traces a 
“path” in this landscape

� this path may sink in the swamps



2.d  Deadlocks
Deadlock principles: diagrams and graphs

Competing processes

¾ Changing the program changes the landscape 
9 here, P releases A before getting B
9 deadlocks between P and Q are not possible anymore

Process Q
...
Get B
...
Get A
...
Release B
...
Release A
...

A required

B required

B required

A required

Process P
...
Get A
...
Release A
...
Get B
...
Release B
...
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

→ no swamp area: there exists 
no path leading to deadlock

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

Joint progress diagram



RAGs

¾ Snapshot of concurrency: Resource Allocation Graph
9 a resource allocation graph is a directed graph that depicts a 

state of the system of resources and processes

2.d  Deadlocks
Deadlock principles: diagrams and graphs

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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A deadlock’s RAG

¾ Resource allocation graphs & deadlocks
9 there is deadlock when a closed chain of processes exists
9 each process holds at least one resource needed by the next 

process

2.d  Deadlocks
Deadlock principles: diagrams and graphs

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

¾ Design conditions for deadlock (create the swamps)
1. mutual exclusion — the design contains protected critical 

regions; only one process at a time may use these

2. hold & wait — the design is such that, while inside a critical 
region, a process may have to wait for another critical region

3. no resource preemption — there must not be any hardware 
or O/S mechanism forcibly removing a process from its CR

+ Scheduling condition for deadlock (go to the swamps)
4. circular wait — two or more hold-&-wait’s are happening in a 

circle: each process holds a resource needed by the next

= Deadlock!
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2.d  Deadlocks
Deadlock principles: diagrams and graphs

¾ Three strategies for dealing with deadlocks
9 deadlock prevention — changing the rules

� one or several of the deadlock conditions 1., 2., 3. or 4. 
are removed a priori (design decision)

9 deadlock avoidance — optimizing the allocation
� deadlock conditions 1., 2., 3. are maintained but resource 

allocation follows extra cautionary rules (runtime decision)

9 deadlock detection — recovering after the facts
� no precautions are taken to avoid deadlocks, but the 

system cleans them periodically (“deadlock collector”)
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2.d  Deadlocks
Deadlock prevention: changing the rules

¾ Remove one of the design or scheduling conditions?
9 remove “mutual exclusion”?

→ not possible: must always be supported by the O/S
9 remove “hold & wait”?

� require that a process gets all its resources at one time
→ inefficient and impractical: defeats interleaving, creates 

long waits, cannot predict all resource needs
9 remove “no preemption” = allow preemption?

� require that a process releases and requests again → ok
9 remove “circular wait”?

� ex: impose an ordering of resources → inefficient, again
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2.d  Deadlocks
Deadlock avoidance: optimizing the allocation

¾ Allow all conditions, but allocate wisely
9 given a resource allocation request, a decision is made 

dynamically whether granting this request can potentially lead 
to a deadlock or not
� do not start a process if its demands might lead to 

deadlock
� do not grant an incremental resource request to a running 

process if this allocation might lead to deadlock
9 avoidance strategies requires knowledge of future process 

request (calculating “chess moves” ahead)
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2.d  Deadlocks
Deadlock avoidance: optimizing the allocation

¾ Resource allocation denial: the “banker's algorithm”
9 at any time, the state of the system is the current allocation of 

multiple resources to multiple processes
� a safe state is where there is at least one sequence that 

does not result in deadlock
� an unsafe state is a state where there is no such 

sequence
9 analogy = banker refusing to grant a loan if funds are too low 

to grant more loans + uncertainty about how long a customer 
will repay



2.d  Deadlocks
Deadlock avoidance: optimizing the allocation

Determination of a safe state

¾ Resource allocation denial: the “banker's algorithm”
9 can a process run to completion with the available resources? 

compare what is still
needed with what is left

(a)

(b)

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 

9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 171



2.d  Deadlocks
Deadlock avoidance: optimizing the allocation

Determination of a safe state (cont'd)

¾ Resource allocation denial: the “banker's algorithm”
9 idea: refuse to allocate if it may result in deadlock 

(c)

(d)
all could run to completion:
→ thus, (a) was a safe state

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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2.d  Deadlocks
Deadlock avoidance: optimizing the allocation
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Determination of an unsafe state

¾ Resource allocation denial: the “banker's algorithm”
9 idea: refuse to allocate if it may result in deadlock

(a) safe ← (a’)

(b’) unsafe

potential for deadlock (we don’t 
know how long Ri will be kept)
→ thus, (b’) is an unsafe state: 

don’t allow (b’) to 
happen

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition). 
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2.d  Deadlocks
Deadlock detection: recovering after the facts
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Principles of Operating Systems
CS 446/646

2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks
9 Deadlock principles: diagrams and graphs
9 Deadlock prevention: changing the rules
9 Deadlock avoidance: optimizing the allocation
9 Deadlock detection: recovering after the facts
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Principles of Operating Systems
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2. Processes
a. Process Description & Control

b. Threads

c. Concurrency

d. Deadlocks
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