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2. Processes
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2.c Concurrency
Types of process interaction

» Concurrency refers to any form of interaction among
processes or threads

v"concurrency is a fundamental part of O/S design
v"concurrency includes

= communication among processes/threads

= sharing of, and competition for system resources

= cooperative processing of shared data

= synchronization of process/thread activities

= organized CPU scheduling

= solving deadlock and starvation problems
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2.c Concurrency
Types of process interaction

» Concurrency arises in the same way at different levels
of execution streams

v multiprogramming — interaction between multiple processes
running on one CPU (pseudoparallelism)

v multithreading — interaction between multiple threads
running in one process

v multiprocessors — interaction between multiple CPUs
running multiple processes/threads (real parallelism)

v multicomputers — interaction between multiple computers
running a distributed processes/threads

— the principles of concurrency are basically the same in all of
these categories (possible differences will be pointed out)
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2.c Concurrency
Types of process interaction

» Whether processes or threads: three basic interactions

v’ processes unaware of each other

— they must use shared resources il
independently, without interfering, Hh
and leave them intact for the others @J resource

v' processes indirectly aware of each

other — they work on common data
and build some result together via
the data (“stigmergy” in biology)

,I

v' processes directly aware of each
other — they cooperate by
communicating, e.g., exchanging
messages

mesSsages
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2.c Concurrency
Race conditions & critical regions

» Inconsequential race condition in the shopping scenario
v’ there is a “race condition” if the outcome depends on the order of

the exeCUtIOn original thread
main () x//

i i Ry
i i i, e,

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

new threads

> _/multi_shopping > _/multi_shopping

Multithreaded shopping diagram and possible outputs
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2.c Concurrency
Race conditions & critical regions

» Inconsequential race condition in the shopping scenario

v"the outcome depends on the CPU scheduling or “interleaving” of
the threads (separately, each thread always does the same thing)

-/multi_shopping

-/multi_shopping
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2.c Concurrency
Race conditions & critical regions

» Inconsequential race condition in the shopping scenario

v"the CPU switches from one process/thread to another, possibly
on the basis of a preemptive clock mechanism

S
- 63\66 e&’Q\e A

grabbing the salad... A : _ R
grabbing the milk... o cpu A a4
grabbing the apples... -7’ e P o
grabbing the butter.. .-"" Br’ 14 R

rabbing the cheese:’.. /
g g i °& ((\,‘\\& \O\)’C‘e( O\(\eee,e II,

lad | )
i1k butt h /

Thread view expanded in real execution time
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2.c Concurrency
Race conditions & critical regions

Consequential race conditions in I/O & variable sharing

char chin, chout;

void echo()
{
do {
1 chin = getchar();
2 chout = chin;
3 putchar(chout);

by
while (...);

}

Hello world!

Single-threaded echo

9/20-10/6/2005

scheduling

©

char chin, chout;

void echo()

{
do {
4 chin = getchar(Q);
5 chout = chin;
6 putchar(chout);
by
while (...);
+

Hello world!

Multithreaded echo (lucky)
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2.c Concurrency
Race conditions & critical regions

» Consequential race conditions in I/O & variable sharing

char chin, chout;

void echo()
{
do {
1 chin = getchar();
5 chout = chin;
6 putchar(chout);
by
while (...);

}

Hello world!

Single-threaded echo
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CPU
scheduling

®

unlucky |

char chin, chout;

void echo()
{
do {
2 chin = getchar();
3 chout = chin;
4 putchar(chout);

by
while (...);

}

Multithreaded echo (unlucky)
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2.c Concurrency
Race conditions & critical regions

» Consequential race conditions in I/O & variable sharing

void echo() void echo()
changed { ) {
to local—+—> char chin, chout; A B char chin, chout;
variables
do { do {

1 chin = getchar(); (|- » 2 chin = getchar();
5 chout = chin; ™ 3 chout = chin;

6 putchar(chout); 4 putchar(chout);

} _ unlucky ...... ’ 1 _
while (...); CPU while (...);
} scheduling }

®

Hello world! E;ﬁ@,..

Single-threaded echo Multithreaded echo (unlucky)
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2.c Concurrency
Race conditions & critical regions

» Consequential race conditions in I/O & variable sharing

v"note that, in this case, replacing the global variables with local
variables did not solve the problem

v"we actually had two race conditions here:

= one race condition over assigning values to shared
variables
= another race condition over which thread Is going to write
to output first; this one persisted even after making the
variables local to each thread
— generally, problematic race conditions may occur whenever

resources and/or data are shared (by processes unaware of
each other or processes indirectly aware of each other)
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2.c Concurrency
Race conditions & critical regions

» How to avoid race conditions?
v" find a way to keep the instructions together
v"this means actually reverting from too much interleaving and

going back to “indivisible” blocks of execution!

chin="e" |chout="e" putchar %«

(a) too much interleaving may create race conditions

| |
Il chin="H" |putchar I
||/\/\/\/\|/p\xvv(\§®\/)\||
| |
|
|
|

il chin="e" |[chout="¢e" putchar()
I
|

(b) keeping “indivisible” blocks of execution avoids race conditions

9/20-10/6/2005
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thread B

thread A

thread B
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2.c Concurrency
Race conditions & critical regions

> The “indivisible” execution blocks are critical regions

v'acritical region is a section of code that may be executed by
only one process or thread at a time

A R N
. : common critical region
B —

v"although it is not necessarily the same region of memory or
section of program in both processes

A R . A'S ?rltlcal region

: ,B’s critical region

— but physically different or not, what matters is that these regions
cannot be interleaved or executed in parallel (pseudo or real)
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2.c Concurrency
Race conditions & critical regions

» We need mutual exclusion from critical regions

v" critical regions can be protected from concurrent access by
padding them with entrance and exit mechanisms (we’ll see
how later): a thread must try to check in, then it must check out

void echo() void echo()
{ {
char chin, chout; A B char chin, chout;
do{ gdo{ ........................
_________ enter critical region? )| enter critical region?
chin = getchar(); chin = getchar();
chout = chin; chout = chin;
putchar(chout); putchar(chout);
T edtoicaliegion | [T eificaliegion
} }
while ( ) while ( )
¥ ¥
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2.c Concurrency
Race conditions & critical regions

a\art of mutual exclusion

1. mutual exclusion inside — only one
process at a time may be allowed in a
critical region

2. no exclusion outside — a process stalled
In @ nonctitical region may not exclude
other processes from their critical regions

3. no indefinite occupation — a critical
region may be only occupied for a finite
amount of time
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2.c Concurrency
Race conditions & critical regions

a\art of mutual exclusion (cont’d

4. no indefinite delay when excluded — a
process may be only excluded for a finite
amount of time (no deadlock or starvation)

5. no delay when not excluded — a critical
region free of access may be entered
Immediately by a process

6. nondeterministic scheduling — no
assumption should be made about the
relative speeds of processes
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HOW is this

2.c Concurrency
Mutual exclusion by busy waiting

» Desired effect: mutual exclusion from the critical region

achieved??

N

9/20-10/6/2005

1.

thread A reaches the gate
to the critical region (CR)
before B

thread A enters CR first,
preventing B from entering
(B Is waiting or is blocked)

thread A exits CR; thread
B can now enter

thread B enters CR

Q’VWR. R critical region
A R
B o}

A :
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 0 — disabling hardware interrupts

R

i critical region

1. thread A reaches the gate A
to the critical region (CR) B/vvvx\
before B

2. assoonasAentersCR, it A
disables all interrupts, thus
B cannot be scheduled

3. assoonasAexits CR,it A
reenables interrupts; B can B/vvvxx'\
be scheduled again

4. thread B enters CR A
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2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 0 —-gisabling-hardware-thterrupts

v" it works, but it is foolish

v" what guarantees that the user void echo()
rocess is going to ever exitthe | {
p.. .g J char chin, chout;
critical region? do {

v' meawhile, the CPU cannot |_______disable hardware interrupts __|
. ! chin = getchar();
interleave any other task, even chout = chin-
unrelated to this race condition putchar(chout);

.. T réénablé Hardware interipts ™

v’ the critical region becomes one [ Y
physically indivisible block, not while (...);
logically ¥

v also, this is not working in multi-

Processors

9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 106



2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 — simple lock variable

1.

9/20-10/6/2005

thread A reaches CRand A

oy

£

finds a lock at 0, which BN\NK | Gl Egen
means that A can enter )
thread A sets the lockto 1 A R

and enters CR, which B - E
prevents B from entering @ | _
thread A exits CR and A R

resets lock to 0: thread B B/vmxqulf

can now enter

thread B sets the lockto 1 A

and enters CR

B
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 — simple lock variable

v’ the “lock” is a shared variable

v entering the critical region means
testing and then setting the lock

v" exiting means resetting the lock

__________________________________________

while (lock);

/* do nothing: loop */ /

lock = TRUE;

__________________________________________

_________________________________________

bool lock = FALSE;

void echo()
{

char chin, chout;

chin = getchar();
chout = chin;
putchar(chout);
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 — %lmpleﬂleelevaﬂablre@

1. thread A reaches CRand A R e
finds a lock at 0, which BNWR critical region;
means that A can enter @

1.1 but before A can setthe A ﬂ
lockto 1, BreachesCR B R
and finds the lock is 0, too ;@g

1.2 Asetsthe locktoland A R
enters CR but cannot B ﬂ‘

prevent the fact that . . .
1.3 ...Bis going to set the

9/20-10/6/2005

lock to 1 and enter CR, too B ) ‘
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 1 —stmplelock-variable- ¢

v’ suffers from the very fatal flaw we | Pool lock = FALSE:

want to avoid: a race condition void echo()
v’ the problem comes from the small | { _
. char chin, chout;
gap between testing that the lock do {
is off and setting the lock .__testlock, thensetlock |
‘while (lock); lock = TRUE; |/ EALEY = QR nOn
T e v chout = chin;
v it may happen that the other putchar(chout);
"""" réseffock ™~~~

thread gets scheduled exactly | oooo TEEt et
inbetween these two actions (falls while (...);
In the gap) }

v" 50 they both find the lock off and
then they both set it and enter
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2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock variable

1. thread Areaches CRand A ﬂ% P
finds the lock at 0 and sets BNWK\ ; criticalregion
It In one shot, then enters

1.1"even if B comes right A
behind A, it will find that B X
the lock is already at 1 Q )

2. thread A exits CR, then A

resets lock to 0 B WMT

gk
3. thread B finds the lock at0 A
and sets it to 1 in one shot, B/vvvvwxﬂ‘
just before entering CR
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2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock variable
v the indivisibility of the “test-lock-

and-set-lock” operation can be void echo()

Implemented with the hardware { _

instruction TSL Zhaz chin, chout;
___________________________________________________________ 0

enter_region:
TSLREGISTER,LOCK | copy lock to registeset lock to 1 AT T ]

CMP REGISTER#0 | was lock zero? ; chin = getchar();
JNE enter_region | if it was non zero, lock was set, so loop / — = A
RET | return to caller; cntical region entered /I chout chin 2
------------------------------------------------------ , putchar(chout);
"""" setlockoff
T eme region. T TTTTTTTTT T S while (L.0);
MOVE LOCK #0 | store a 0in lock / }
RET | return to caller /
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2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock <> one key ©

1. thread AreachesCRand A ﬁ o e
finds a key and takes it B/vvvxk crifica region

1.1’ even if B comes right A M
behind A, itwill notfinda B X

2. thread A exits CR and puts ANWWVV\I R
the key back in place BWMT

3. thread B finds the key and A :
takes it, just before Bmvvvw»ﬂ‘j
entering CR
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2.c Concurrency
Mutual exclusion by busy waiting

> Implementation 2 — “indivisible” lock <> one key ©
v" “holding” a unigue object, like a

key, is an equivalent metaphor for [\oid echo(
“test-and-set” {

v’ this is similar to the “speaker’s 3';""2 chin. chout:
baton” in some assemblies: only """ fake keyandwn
one person can hold it at a time chin = getchar();

chout = chin;

v holding is an indivisible action: putchar(chout);
you see it and grab it in one shot ______:_;:f‘?_t__‘frf‘__fz_é_g’____:::::::

v after you are done, you release while (...);
the object, so another process ¥

can hold on to it
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 3 — TSL-free toggle for two threads

1. thread A reaches CR, finds A R@ N R
a lock at 0, and enters B/vvvxk . criticalregion
without changing the lock )

2. however, the lockhasan A R
opposite meaning for B: B -

“off” means do not enter e .

3. only when A exits CR does A R

it change the lock to 1; B/vwvmln'!

thread B can now enter

4. thread B setsthe locktol A
and enters CR: it will reset B
It to O for A after exiting
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 3 — TSL-free toggle for two threads

v’ the “toggle lock” is a shared bool toggle = FALSE;
variable used for strict alternation | \6ig echo()
v here, entering the critical region { ]
: : char chin, chout;
means only testing the toggle: it do {
mustbe atOfor A, and 1forB 47 """ festioggle. |
" L chin = getchar();
v’ exiting means _5W|tch|nq the T
toggle: Asetsittol,and Bto O ; ; putchar(chout);
i ,_A:s_(io_d_e___________________ _ES’_s_c_o_d_e ___________________ /' ," R §Witbh_fﬁggfé ________________
while (toggle); | while (ttoggle); [ //| %
/* loop */ ' /* loop */ 0 while ( )
_____________________________________________________ }
toggle = TRUE; i toggle = FALSE;
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 3 — FSkt-free-toggle-fortwo-threads—S

@ . @

5. thread B exits CR and A :
switches the lock backto 0 B :
to allow A to enter next @

5.1 but scheduling happensto A
make B faster than A and BNWK\
come back to the gate first

5.2 aslong as A is still busy, A
slow or interrupted inits B
noncritical region, B is

barred access 10 1ts CR - _ this implementation avoids TSL by
— this violates item 2. of the splitting test & set and putting them
chart of mutual exclusion In enter & exit; nice try... but flawed!
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2.c Concurrency
Mutual exclusion by busy waiting

» |Implementation 4 — Peterson’s no-TSL, no- alternatlon

@ % I
1. Aand B each have their A R
own lock; an extra toggle BNWK\

g critical region
is also masking either lock vawj%vvvv\
2. Aarrives first, sets its lock, A R
pushes the mask to the B/vvvx\ i
other lock and may enter

3. then, B also sets its lock & A
pushes the mask, but must B
wait until A’s lock Is reset A

4. Aexits the CR and resets AMMN""?@?WV\R

Its lock; B may now enter K\
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 4 — Peterson’s no-TSL, no-alternation

v’ the mask & two locks are shared

v' entering means: setting one’s
lock, pushing the mask and
tetsing the other’'s combination

v exiting means resetting the lock

A’s code B's code
lock[A] = TRUE; . lock[B] = TRUE;
mask = B; E mask = A;
whille (lock[B] && i while (lock[A] && .
mask == B); | mask == A); / /
/* loop */ . /* loop */ j

9/20-10/6/2005

bool lock[2];
INnt mask;

void echo()
{

char chin, chout;

chin = getchar();
chout = chin;
putchar(chout);
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2.c Concurrency
Mutual exclusion by busy waiting

» Implementation 4 — Peterson’s no-TSL, no- alternatloné»

o
1. Aand B each have their A R - o
own lock; an extra toggle B~~~ ; criticalregion ¢
IS also masking either lock
2.1 A'is interrupted between A
setting the lock & pushing B
the mask; B sets its lock

2.2 now, bothAand Braceto A
push the mask: whoever B
does it last will allow the
other one inside CR P\ pusedfast alomne ® ml.

—> mutual exclusion holds!! B “
(no bad race condition)
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2.c Concurrency
Mutual exclusion by busy waiting

» Summary of these implementations of mutual exclusion

v Impl. 0 — disabling hardware interrupts
% NO: race condition avoided, but can crash the system!
v Impl. 1 — simple lock variable (unprotected)
___________ % __NO:stil suffers from race condition
v Impl. 2 — indivisible lock variable (TSL) this will be the 1
b YES:works, but requires hardware %90 0r mueres”
v Impl. 3 — TSL-free toggle for two threads
% NO: race condition avoided inside, but lockup outside
v Impl. 4 — Peterson’s no-TSL, no-alternation

= YES: works in software, but processing overhead
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2.c Concurrency
Mutual exclusion by busy waiting

» Problem: all implementations (1-4) rely on busy waiting

v" “pusy waiting” means that the process/thread continuously
executes a tight loop until some condition changes

v" busy waiting is bad:
= waste of CPU time — the busy process is not doing
anything useful, yet remains “Ready” instead of “Blocked”
= paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority

process A, thus preventing A from exiting CR and . . .
liberating B! (B Is working against its own interest)

— we need for the waiting process to block, not keep idling
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Implementation 2’ — indivisible blocking lock = mutex
v amutex is a safe lock variable with

blocking, instead of tight looping

v if TSL returns 1, then voluntarily
yield the CPU to another thread
Tmutex_lock: T TTTTTTTTTTTTTTTTTTTTTT
TSL REGISTER MUTEX | copy mutex to register and set mutex to 1 /
CMP REGISTER #0 | was mutex zero? /
JZE ok | If it was zero, mutex was unlocked, so refun,
SCALL thread. vield | mutex is busy; schedule another thread /
WP mitex_lock |ty again later ;o
ok: RET | return to caller; critical region entered » /
""" mutex_unlock:
MOVE MUTEX #0 | store a 0 in mutex ,’I
RET | return to caller '

void echo()
{

char chin, chout;

chin = getchar();
chout = chin;
putchar(chout);
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Difference between busy waliting and blocked

v"in busy waiting, the PC is always Ready

looping (increment & jump back)

v' it can be preemptively interrupted
but will loop again tightly whenever
rescheduled — tight polling

v" when blocked, the process’s PC
stalls after executing a “yield” call = .

Blocked

voluntary
event wait
(block)

v" either the process is only timed i
v'oritis truly “Blocked” and put in

out, thus it is “Ready” to loop-
and-yield again — sparse polling
event queue — condition waiting
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

> lllustration of mutex use: shared word counter
v' we want to count the total number of words in 2 files

v we use 1 global counter variable and 2 threads: each thread
reads from a different file and increments the shared counter

| __- ONE process
_— One counter

two threads

A common counter for two threads
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

int total words;

void main(...)

{
- . -declare, initialize.. . .
pthread create(&thl, NULL, count_words, (void *)filenamel);
pthread create(&th2, NULL, count_words, (void *)filename2);
pthread join(thl, NULL);
pthread join(th2, NULL);
printf(*"total words = %d", total words);

¥

void *count_words(void *filename)

{

...openfile. ..
while (...getnextchar...) {
1T (...charis not alphanum & previous char is alphanum...) {
total words++;

} \
...... total words = total words + 1;

IS not necessarily atomic! (depends on
machine code and stage of execution)

Multithreaded shared counter with possible race condition
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» A race condition can occur when incrementing counter

v"if not atomic, the increment block of thread 1, “getl-add1” may
be interleaved with the increment block of thread 2, “get2-add2”
to produce “getl-get2-add1-add2” or “getl-get2-add2-addl”

— this results in missing one count

time
Thread 1 Thread 2

Two threads race to increment the counter
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

int total words;
pthread mutex t counter_lock = PTHREAD MUTEX INITIALIZER;

void main(int ac, char *av[])

{
. . .declare, initialize. . .
pthread create(&thl, NULL, count _words, (void *)filenamel);
pthread create(&th2, NULL, count_words, (void *)filename2);
pthread join(thl, NULL);
pthread join(th2, NULL);
printf(*"total words = %d', total _words);

s

zoid *count_words(void *filename) pﬂﬁedihecxmcmregmn

.. _openfile. .. with mutual exclusion
while (...getnextchar...) {

1T (...charis not alphanum & previous char is alphanum...) {

Mulithreaded shared counter with mutex protection

9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 128



2.c Concurrency
Mutual exclusion & synchronization — mutexes

» System calls for thread exclusion with mutexes
v err = pthread mutex lock(pthread mutex_ t *m)

locks the specified mutex

= |f the mutex Is unlocked, it becomes locked and owned
by the calling thread

= |f the mutex is already locked by another thread, the
calling thread is blocked until the mutex is unlocked

v err = pthread mutex unlock(pthread mutex_t *m)
releases the lock on the specified mutex

= |fthere are threads blocked on the specified mutex, one
of them will acquire the lock to the mutex
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Real-world mutex use: the producer/consumer problem

v
v

v

producer — generates data items and places them in a buffer
consumer — takes the items out of the buffer to use them

example 1: a print program produces characters that are
consumed by a printer

example 2: an assembler produces object modules that are
consumed by a loader

7 : producer

consumer
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Unbounded buffer, 1 producer, 1 consumer
v 1n modified only by producer and out only by consumer

v" no race condition; no need for mutexes, just a while loop

item[] b;

b[1] | b[2]

b[3]

b[4]

b[5]

int In, out;

7y

7y

{

INn++;
ks
s

void producer()

while (true) {
item = produce();

b[in] = i1tem;

9/20-10/6/2005

void consumer()

{
while (true) {

while (out == 1In);

item = bJout];
out++;

consume(item);

}
}
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Unbounded buffer, 1 producer, N consumers
v' out shared by all consumers — mutex among consumers

v" producer not concerned: can still add items to buffer at any time

item[] b; b[1] |b[2] [DB[3] | b[4] |b[5] | « « « - mutex out_mutex;
int In, out; A 7
void producer() void consumer()
{ {
while (true) { while (true) {
item = produce(); I win out ==—1In);

b[in] = i1tem;

INn++; I
} L L _ unlock(out _mutex) ;
1 but this implementation s flawed: all  F S Consume () T
consumers pass the “while” at once, 3
end up waiting at lock, then enter 1

even if buffer is empty . . .
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Unbounded buffer, 1 producer, N consumers
v' out shared by all consumers — mutex among consumers
v" producer not concerned: can still add items to buffer at any time

item[] b; b[1] |b[2] [DB[3] | b[4] |b[5] | « « « - mutex out_mutex;
int In, out; 7 7
void producer() void consumer()
{ {
while (true) { ) while (true) {
item = produce(); lock(out_mutex);
' A while (out == 1n);
b[in] = 1tem; item = bfout];
In++; | out++;
¥ L . _ . unlock(out _mutex) ;
1 this |mplementat|on s correct. evenif F S Consume (i) T
a consumer loops inside, it means the 3
buffer is empty anyway, so the others | 3
may as well be blocked outside . . .
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2.c Concurrency
Mutual exclusion & synchronization — mutexes

» Unbounded buffer, N producers, N consumers
v In shared by all producers — other mutex among producers

v"consumers and producers still (relatively) independent

mutex out mutex;
mutex In_mutex;

item[] b; b1l | b[2] | B3] [ b[4] | bi5]
int In, out; 7Y 7Y

void producer() void consumer()

{ {

2 A whiTe (out == 1n);

b[in] = 1tem
________ N+, ) L outs+:
unlock(in_mutex); unlock(out_mutex)
Sy T ) ~consume(rtem);
+ +

still correct, but in all cases the 1
consumers are busy waiting . . .
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Synchronization

v’ processes can also cooperate by means of simple signals,
without defining a “critical region”

v" like mutexes: instead of looping, a process can block in some
place until it receives a specific signal from the other process

» Binary semaphore < mutex
v"abinary semaphore is a variable that has a value 0 or 1
v await operation attempts to decrement the semaphore
= 1 — 0and goes through; 0 — blocks
v’ asignal operation attempts to increment the semaphore
= 1-—1 nochange; 0 — unblocks or becomes 1
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Binary semaphore < mutex

signal
VRS . : : :
I \\ signal signal signal signal
- = - - - . - . - -
\\ 1 £ ST S\LT RNy
i @
. NANUA ANA NN - .
. AN AN
. NN
value = 1 (“off”) value = 0 (“on”) value =0 value =0 value =0
no queue no queue 1 in queue 2 in queue 3 in queue
wait wait wait wait
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Unbounded buffer, 1 producer, 1 consumer with sync
v'if buffer is empty, the consumer waits on a semaphore
v"if buffer just got one item, the producer signals to the consumer

item[] b;

b[1]

b[2]

b[3]

b[4]

b[5]

bin_semaphore Bsem = O;

int I1n, out;

7y

7y

{

1T (out

void producer()

while (true) {
item = produce();

~if (out == in-1)
signal (Bsem);

1 unfortunately, this can lead to an
inconsistent semaphore state . . .
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void consumer()

{

whilg (true) { )

consume(item);

}
¥
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

in
§ value = 0
’ i no queue

| ;
4 g ;
;

X = produce();
L. b[in++] = Xx;

value =0
no queue

X = b[out++];
2. consume(X);

X = b[out++];
3. | consume(x);
empty — | wart(sem);

value =0
1 in queue

value =0
i no queue

'I
|
o :
X = produce(Q); | i
4. | b[in++] = x;

mmnmnla signal (sem); \
gnal (sem) 3 § § e Value=1 i value =0
= 1inqueue no queue

transitory state ~ ~-_--=7
9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 138

—




empty — | waikt(sem)
S. X = bJout++];
now consume(X) ;

empty —» | wait(sem); —

X = bJout++];
consume(X) ;

, | X = produce();
4" | bLin++] = x:
signal (sem);

.. but goes through

6.) | x = b[out++];
consume(X) ;

9/20-10/6/2005

2.c Concurrency
Mutual exclusion & synchronization — semaphores

, 2

$

L,‘—‘s
A~

VN
A~

VLA N
A

-~

\la §

value =0
no queue

i value =0
no gueue

value =1
no gueue

i value =0
no gueue

— the last “signal” was not matched by
a prior “wait”. they missed each other
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Unbounded buffer, 1 producer, 1 consumer with sync

v we need to create critical areas to keep “consuming” and
“checking the semaphore” together

0 1 2 3 4
item[] b; b[1] | bI2] | B3] | b4] | bI5] bin_semaphore Bsem = O;
int In, out; 7 7

{

item =

1T (out

9/20-10/6/2005

while (true) {

void producer()

roduce

~if (out == in-1)
signal (Bsem);

void consumer()

{

while (true) {

wairt(Bsem);

item = bJout];
out++;

consume(1i

B

3 but there is a deadlock: here the consumer is
blocking the producer, not other consumers . . .
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Unbounded buffer, 1 producer, 1 consumer with sync

v" the consumer needs to remember the current state of 1n &
out, so it can exit the CR before checking the semaphore

0 1 2 3

4

item[] b;

b[1] [ b[2] | b[3] | b[4]

b[5]

bin_semaphore Bsem = O;

int I1n, out;

7y

7y

void producer()

{
while (true)

item =

1T (out ==

}

roduce

signal (Bsem);

{

in—-1)

finally correct!
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void consumer()

{

"""" if (out == in0)
wairt(Bsem);

}
}
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Semaphores are used for signaling between processes
v semaphores can be used for mutual exclusion
v" binary semaphores are the same as mutexes

v'integer semaphores can be used to allow more than one
process inside a critical region; generally:

= the positive value of an integer semaphore corresponds to
a maximum number of processes allowed concurrently
Inside a critical region

= the negative value of an integer semaphore corresponds to
the number of processes currently waiting in the queue

v" binary and integer semaphores can also be used for
synchronization
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Integer semaphore < “thermometer”

< signal signal ~ signal ~ signal
=~ ,f_—~\ ,f_—~\ — ,f_—~\ — ,f_—~\ /f——
M L2 3 L2 S L2 L2 N Lz
- ‘W
| | :) N
: a4 : N N R A AN VaVaVve | L
: : NN
value = +2 value = +1 value =0 value = -1 value = -2
no queue no queue no queue 1 in queue 2 in queue
_._”7 \\s —’7\\~ - \\s —’7\\5 —’7 \\\ >
wait wait wait wait
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» All semaphores maintain a queue of waiting processes

Processor

YW __-~

YW __-~

Processor
® A = ® C =
1
——TTIT] [ T Ieol Pl = — T Ea—
1 Blocked queue Semaphore Ready gqueue " Blocked gueue Semaphore Ready gueue
1 1
\ Processor ! Processor
QCD B 5 © D
1
1
ST [ T A R 1NN T i
I Blocked gueue Semaphore Ready gueue 1 Blocked gueue Semaphore Ready gueue
I i
\ Processor 1 Processor
\4® D = : @ D
1
1
1
LTI 3 F—TTIald C L ST R 2 |— T [ [ [o—
| Blocked gueue Semaphore Ready gqueue ,' Blocked gueue Semaphore Ready queue
! !
\ Processor !
QG) D +
T 0 Tl
Blocked gueue Semaphore Ready gqueue

9/20-1

0/6/2005

Example of semaphore mechanism
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Producer/consumer with an integer semaphore

v no need for a condition: the semaphore itself keeps track of the
size of the buffer

0 1 2 3 4

item[] b; b[1] | bi2] [B[3] bl |bis1 | - - - - Semaphore sem = O;
int In, out; 7 7

void producer() void consumer()

{ {

while (true) {
roduce

item = bJout];
out++;

signal (sem);
consume

}

} correct! }
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

= value = +1
’ § § = No queue

1
3. | x = b[out++]; "
consume(x); A ‘
§ § I value =0
no queue

/
! v
. | X = produce(Q); |1
47 | brin++] = x; | |
signal (sem); !
ignal (sem) N § § value = +1
o, = No queue
;. wait(sem); .'I v I value =0
" | X = b[out++]; \ ‘ no queue
consume(x) ; N value = —1
wait(sem); , § § AAI 1 in queue
: v
N ~ |
6. | x =0 SR
con e : ‘\
-~ T~ 4

the consumer is blocked, as it should be; the producer may proceed . . .
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» How semaphores may be implemented

semWait(s)

while (!testset(s.flag))
/* do nothing */;

s.count—-;

if (s.count < 0)

{

place this process in s.gueue;

block this process (must alsoc set

}

s.flag = 0;

semSignal(s)

while (!testset(s.flag))
/* do nothing */;
s.count++;
if (s.count <= 0)
{
remove a process P from s.gueue;
place proccess P on ready list
}
a.flag = 0;

.flag to 0)

semWalit(s)

inhibit interrupts;

g.count—-;

if (s.count < 0)

{
place this process
block this process

:n.

else

allow interrupts;

semS3iqnal(s)

inhikit interrupts;
s.count+4;
if (s.count <= 0)
remove a process P
place process P on
1|-

allow interrupts;

in s.gueuse;
and allow interrupts

from s.queue;
ready list

ia) Testset Instruction

(b) Interrupts

Two possible implementations of semaphores

9/20-10/6/2005
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2.c Concurrency
Mutual exclusion & synchronization — semaphores

» Bounded buffer, 1 producer, 1 consumer with sync
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2.c Concurrency
Mutual exclusion & synchronization — monitors

» A monitor Is a language-level encapsulation construct
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2.c Concurrency
Mutual exclusion & synchronization — monitors

» Producer/consumer problem with monitors
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2.c Concurrency
Mutual exclusion & synchronization — message passing

» Message passing: senders, receivers and mailboxes
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2.c Concurrency
Mutual exclusion & synchronization — message passing

» Producer/consumer problem with message passing
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Principles of Operating Systems

CS 446/646

2. Processes

Concurrency

v Types of process interaction

v" Race conditions & critical regions
v Mutual exclusion by busy waiting
v Mutual exclusion & synchronization

" mutexes
= semaphores
= monitors

= message passing

Deadlocks
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Principles of Operating Systems
CS 446/646

2. Processes

d. Deadlocks

v" Deadlock principles: diagrams and graphs

v" Deadlock prevention: changing the rules

v" Deadlock avoidance: optimizing the allocation
v" Deadlock detection: recovering after the facts
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2.d Deadlocks
Deadlock principles: diagrams and graphs

» A deadlock is a permanent blocking of a set of threads

v"adeadlock can happen while threads/processes are competing
for system resources or communicating with each other

v"there is no universal efficient solution against deadlocks

=

)

1
3:
c b

I IR -

=
1=
| (ol

{=

e ———————

(a) Deadlock possible

lllustration of a deadlock
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i3) )
! ]
Fom

=

g

Cwom

(b) Deadlock
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2.d Deadlocks
Deadlock principles: diagrams and graphs

» lllustration of a deadlock
v' two processes, P and Q, compete for two resources, A and B
v"each process needs exclusive use of each resource

Process P Process Q
[ Get A Get B )
A required B required
(< Get B Get A A
§ \ Release A Release B r
B required - - - - - - A required
\ Release B Release A J

Competing processes
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2.d Deadlocks
Deadlock principles: diagrams and graphs

> lllustration of a deadlock — scheduling path 1 ©
v Q executes everything before P can ever get A
v when P is ready, resources A and B are free and P can proceed

Process P Process Q
............. >
ARNsssEEEEEEEEEEsEEEEEEEaEs - & ST
(| Get A 5 Get B )
A required B required
(1| Get B Get A ¢
¢ V| Release A Release B &
B required - - - "-,‘ - - - A required

\ Release B Release A /

Happy scheduling 1

9/20-10/6/2005 CS 446/646 - Principles of Operating Systems - 2. Processes 157



2.d Deadlocks
Deadlock principles: diagrams and graphs

> lllustration of a deadlock — scheduling path 2 ©

v' Qgets B and A, then P is scheduled; P wants A but is blocked by
A’s mutex; so Q resumes and releases B and A; P can now go

Process P Process Q
L / ’:...' ....... > o
(| Get A ¥ Get B )
A required B required
(< | Get B 21 | (Get A Y ¢
4 V| Release A Release B %
B required - - - 3 - - - A required
\ Release B Release A /

Happy scheduling 2
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2.d Deadlocks
Deadlock principles: diagrams and graphs

> lllustration of a deadlock — scheduling path 3 ®

v Q gets only B, then P is scheduled and gets A; now both P and
Q are blocked, each waiting for the other to release a resource

Process P Process Q
( Get A %Get B )
A required B required
(< Get B Get A ) ¢
v V| Release A :SF“/PL, Release B r
> deadlock <C
B required - - - N - - - A required

\ Release B Release A Y

Bad scheduling — deadlock
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2.d Deadlocks

Deadlock principles: diagrams and graphs

Progress
of Q A

Al A2
Release

7 /4%

A want A
) Release // /7

W\

-

%

/

B

B
Required

huevitab]e

GetB +

3 | s \,

—7/

‘4

Get A GetB  Release A Release B

\T‘Y\J
s = both P and Q want resource B Required \—/T\—}

l:' = deadlock-inevitable tegion B Required
Joint progress diagram

g = both P and QQ want resource A
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2.d Deadlocks
Deadlock principles: diagrams and graphs

» Deadlocks depend on the program and the scheduling

v' program design 7
= the order of the statements in the LD
code creates the “landscape” of S
the joint progress diagram
= this landscape may contain gray
“swamp” areas leading to deadlock
v" scheduling condition 7
= the interleaved dynamics of H qes
multiple executions traces a | |

“path” in this landscape
= this path may sink in the swamps —
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2.d Deadlocks
Deadlock principles: diagrams and graphs

» Changing the program changes the landscape
v" here, P releases A before getting B
v"deadlocks between P and Q are not possible anymore

Process P Process Q
Get A Get B )
A required { L L B required
(Release A Get A Ae
Get B Release B >,
B required { . - - - A required
Release B Release A y

Competing processes
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2.d Deadlocks
Deadlock principles: diagrams and graphs

Progress
ni"‘ Q
Al 42 43
Release
A 7
% 4
A, Release /P and Q/¢
Required B / want A 72
— 1 | D\
e P and Q'\
Get A want B\\::
B s
Required \
Get B k\ - -
| |
>
‘ Progress
. : > ofp
GetA ReleaseA GetB Release B

— N0 swamp area: there exists m m
. £ equire equire
no path leading to deadlock

Joint progress diagram
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2.d Deadlocks
Deadlock principles: diagrams and graphs

» Snhapshot of concurrency: Resource Allocation Graph
v'aresource allocation graph is a directed graph that depicts a

state of the system of resources and processes

Reques

ts

Held by

P1 > @ Ra p] ® Ra
(a) Resouce is requested (b) Resource is held
Ra Ra
e eae
A A
= e & ey
‘b_é‘?c o ,_&Q"c &
Pl P2 Pl P2
"’;:/ é\ﬁ‘ "';:/ c}o
q{q. )7 q’.ﬂ- %
e oo
Rb Rb

{¢) Circular wait
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RAGS

(d) No deadlock
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2.d Deadlocks
Deadlock principles: diagrams and graphs

» Resource allocation graphs & deadlocks
v" there is deadlock when a closed chain of processes exists
v"each process holds at least one resource needed by the next

Process

P1 P2 P3 P4
1 1 1 1
Ra Rb Rc Rd

A deadlock’s RAG
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2.d Deadlocks
Deadlock principles: diagrams and graphs

» Design conditions for deadlock (create the swamps)

1. mutual exclusion — the design contains protected critical
regions; only one process at a time may use these

2. hold & wait — the design is such that, while inside a critical
region, a process may have to wait for another critical region

3. no resource preemption — there must not be any hardware
or O/S mechanism forcibly removing a process from its CR
+ Scheduling condition for deadlock (go to the swamps)
4. circular wait — two or more hold-&-wait’s are happening in a
circle: each process holds a resource needed by the next

= Deadlock!
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2.d Deadlocks
Deadlock principles: diagrams and graphs

> Three strategies for dealing with deadlocks
v"deadlock prevention — changing the rules

= one or several of the deadlock conditions 1., 2., 3. or 4.
are removed a priori (design decision)

v" deadlock avoidance — optimizing the allocation

= deadlock conditions 1., 2., 3. are maintained but resource
allocation follows extra cautionary rules (runtime decision)

v" deadlock detection — recovering after the facts

= no precautions are taken to avoid deadlocks, but the
system cleans them periodically (“deadlock collector”)
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2.d Deadlocks
Deadlock prevention: changing the rules

» Remove one of the design or scheduling conditions?
v remove “mutual exclusion™?
— not possible: must always be supported by the O/S
v remove “hold & wait™?
= require that a process gets all its resources at one time

— Inefficient and impractical: defeats interleaving, creates
long waits, cannot predict all resource needs

v remove “no preemption” = allow preemption?

= require that a process releases and requests again — ok
v remove “circular wait"?

= ex: impose an ordering of resources — inefficient, again
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2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Allow all conditions, but allocate wisely

v"given a resource allocation request, a decision is made
dynamically whether granting this request can potentially lead
to a deadlock or not

= do not start a process Iif its demands might lead to
deadlock

= do not grant an incremental resource request to a running
process If this allocation might lead to deadlock

v'avoidance strategies requires knowledge of future process
request (calculating “chess moves” ahead)
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2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm”

v’ at any time, the state of the system is the current allocation of
multiple resources to multiple processes

= asafe state is where there is at least one sequence that
does not result in deadlock

= an unsafe state Is a state where there is no such
sequence

v"analogy = banker refusing to grant a loan if funds are too low
to grant more loans + uncertainty about how long a customer
will repay
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2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm”
v/ can a process run to completion with the available resources?

El E2 B3 Rl R2 E3 El E2 B3

Pl 3 2 2 Pl 1 0 0 Pl 2 2 2

| & 1 3 P2 & 1 2 P2 0 0 1

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
RL__R2 R RIL R RS .7 compare what is still
o [ 3 | 6 | Lo [ 1 | 1 | g~ , ,
Eesource vector R Available vector V needed W|th What IS |eft
(a) {a) Initial state
El E2 B3 El R2 B3 El E2 E

Pl 3 2 2 Pl 1 0 0 Fl 2

P2 0 0 0 2 || o 0 o |l 2 || o 0 0

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-4A
Rl B2 B3 Rl 2 B3 *
L e [ 3] s | [ [ 21 5] -7
Resource vector R Available vector V

(b) (b) P2 runs to completion
\! Determination of a safe state
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2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm
v' idea: refuse to allocate if it may result in deadlock

Rl R2 F3 El R2 E3 Rl R2 F3

Pl 0 ] 0 Pl 0 0 0 Pl 0 ] 0

P2 0 ] P2 0 0 0 P2 0 ] 0

F3 3 1 4 F3 2 1 1 F3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matriz C Allocation matrix A C-4a
Rl E2 B3 Rl R2 B3 *
/
\¥ | s [ 3 | ¢ | ER | 3 | &~
Fesource vector R Available vector ¥
(C) (¢} P1 runs to completion
Rl R2 R3 El R2 E3 Rl R2 R3

Pl 0 ] 0 Pl 0 0 0 Pl 0 ] 0

P2 0 0 0 P2 0 0 0 P2 0 0 0

F3 0 0 0 F3 0 0 0 F3 0 0 0

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matriz C Allocation matrix A C-4A
Rl R2 R3 Rl R2 R3 *
9 3 6 E 3 1] &~ ’ _
Resource vector R Available vector V all could run to completion:
(d) (@) P3 runs to completion — thus, (a) was a safe state
]

Determination of a safe state (cont'd)
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2.d Deadlocks
Deadlock avoidance: optimizing the allocation

» Resource allocation denial: the “banker's algorithm
v' idea: refuse to allocate if it may result in deadlock

R1 R2 R3 R1 R2 R3 Rl R2 R3
Pl 3 2 2 Pl 1 o L] Pl 2 2 2
P2 &) 1 3 P2 5 1 1 P2 1 4] 2
P3 3 1 4 P3 2 1 1 P3 1 ] 3
P4 4 2 2 P4 L] o 2 P4 4 2 (0]
Claim matrix 'C Allocation matrix A C—-A
R1 R2 E3 Rl R2 E3
s T 5T e [T 1il2]
Resource vector R Availlable vector ¥V
(a) Safe e (a’) (a) Initial state
R1 R2 R3 R1 R2 R3 R2 R3
Pl 3 2 2 1| 2 0 1 2 1
P2 6 1 3 P2 5 1 1 0] 2
P3 3 1 4 P3 2 1 1 o 3
P4 4 2 2 P4 L] ] 2 2 0
Claim matrix C Allocation matrix A C—A
| = | = | = | . potential for deadlock (we don't
, Resource vector R Avgllable vector ¥V knOW hOW |Ong Ri WI” be kept)
(b ) unsafe (b) P1 requests one unit each of R1 and R3 —> thus’ (b1) |S an unsafe State
Determination of an unsafe state don't allow (b’) to
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2.d Deadlocks
Deadlock detection: recovering after the facts
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d. Deadlocks

v" Deadlock principles: diagrams and graphs

v" Deadlock prevention: changing the rules

v" Deadlock avoidance: optimizing the allocation
v" Deadlock detection: recovering after the facts
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Memory Management
CPU Scheduling
Input/Output

File System

N o 0 b~

Case Studies
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