
9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 99

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems
a. Role of an O/S

b. O/S History and Features

c. Types of O/S

d. Major O/S Components

e. System Calls
System calls are the O/S API
Sample of UNIX system calls
Equivalent Windows system calls
System programs

f. O/S Software Architecture

g. Examples of O/S

Location of the system calls in the Molay view

user space

kernel space

The system calls are the mandatory interface between the user programs and the O/S

System calls

1.e System Calls
System calls are the O/S API

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 100

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

user space

kernel space

Location of the system calls in the Tanenbaum view

System calls

1.e System Calls
System calls are the O/S API

The system calls are the mandatory interface between the user programs and the O/S
9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 101

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 102

1.e System Calls
System calls are the O/S API

All programs needing resources must use system calls

system calls are the only entry points into the kernel and system
most UNIX commands are actually library functions and utility
programs (e.g., shell interpreter) built on top of the system calls
however, the distinction between library functions and system
calls is not critical to the programmer, only to the O/S designer

Operating system

User programs

Library functions & programs
. . . fputs, getchar, ls, pwd, more . . .

. . . fork, open, read System calls rm, chmod, kill . . .

user space

kernel space
the “middleman’s

counter”

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 103

1.e System Calls
System calls are the O/S API

...
int main(...)
{

...
if ((pid = fork()) == 0) // create a process
{

fprintf(stdout, "Child pid: %i\n", getpid());
err = execvp(command, arguments); // execute child

// process
fprintf(stderr, "Child error: %i\n", errno);
exit(err);

}
else if (pid > 0) // we are in the
{ // parent process

fprintf(stdout, "Parent pid: %i\n", getpid());
pid2 = waitpid(pid, &status, 0); // wait for child
... // process

}
...

return 0;
}

Sample 1: implementing a shell command interpreter with system calls and library functions

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 104

1.e System Calls
System calls are the O/S API

Sample 2: implementing the more command with system calls and library functions

...
int main(int ac, char *av[])
{

...
if ((fp = fopen(*av, "r")) != NULL) { // open file

while (fgets(line, 512, fp)) { // read next line
if (num_of_lines == 24) { // is screen full?

while ((c = getchar()) != EOF) { // prompt user
switch (c) {
case 'q': ... // prepare to quit
case ' ': ... // prepare to show
... // one more screen
}

}
}
if (fputs(line, stdout) == EOF) // show line

exit(1); // or finish
}
num_of_lines++; // count line

}
fclose(fp) // close file
...

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 105

1.e System Calls
System calls are the O/S API

application
code

memory allocation
function malloc

sbrk
system call

kernel

user process

system calls

user process

C library
functions

application
code

kernel

Stevens, W. R. and Rago, S. A. (2005) Advanced
Programming in the UNIX Environment (2nd Edition).

Difference between C library functions and system calls

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 106

1.e System Calls
System calls are the O/S API

System calls
system calls offer back-end, low-level services
for example: sbrk only increases or decreases a process’s
address space by a specified number of bytes

Library functions
library functions offer front-end services that contain higher-
level logic
for example: malloc implements a particular memory
allocation strategy

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 107

1.e System Calls
System calls are the O/S API

application
code

memory allocation
function malloc

sbrk
system call

kernel

user process

application
code

memory allocation
function malloc

TRAP(#sbrk)
system call instruction

user process

kernel

call function sbrk

Note: In truth, the system call
functions are themselves utility
functions wrapping the actual
system trap instructions. A system
call function invokes the kernel
service of the same name by (a)
placing the arguments in registers
and (b) executing the machine
instruction that will generate a
software interrupt in the kernel.

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 108

1.e System Calls
System calls are the O/S API

Steps in making a system call
1. – 3. user program pushes

parameters onto stack
4. user prog. calls library function read
5. function read puts system call’s code

number #read in a register
6. function executes TRAP

instruction: this switches to kernel
mode and jumps to fixed address

7. kernel program gets code # and
dispatches to call handler’s pointer

8. system call handler runs
9. control returns to user space
10. – 11. read returns to user program,

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

11 steps in making a system call
which clears stack

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 109

1.e System Calls
System calls are the O/S API

Note: 3 methods to pass parameters
between a process and the O/S

pass parameters in registers

store parameters in a table in
memory, and pass table address
as a parameter in a register

parameters pushed (stored) onto
the stack by the program, and
popped off the stack by the O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 110

1.e System Calls
System calls are the O/S API

Main categories of system calls
process creation and management
main-memory management
file access
directory and file-system management
I/O handling
protection
networking
information maintenance (time)

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 111

1.e System Calls
Sample of UNIX system calls

A few common system calls for process control
pid = fork()
create a child process identical to the parent
err = execve(name, argv, ...)
replace a process’s core image
pid = waitpid(pid, ...)
wait for a child process to terminate
exit(status)
terminate process execution, returning status
err = kill(pid, signal)
send a signal to a process

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 112

1.e System Calls
Sample of UNIX system calls

A few common system calls for file access
fd = open(file, how, ...)
open a file for reading, writing or both
err = close(fd)
close an open file
n = read / write(fd, buffer, nbytes)
read (write) data from a file (buffer) into a buffer (file)
err = stat(name, &buf)
get a file’s status information
err = chmod(name, mode)
change a file’s protection bits

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 113

1.e System Calls
Sample of UNIX system calls

A few common system calls for directory management
err = mkdir(name, mode)
create a new directory
err = rmdir(name)
remove an empty directory
err = chdir(dirname)
change the working directory
err = link(name1, name2)
create a new entry, name2, pointing to name1
err = mount(name, path, how)
mount a file system

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 114

1.e System Calls
Sample of UNIX system calls

Note: The detailed effect of
these commands will become
clearer in subsequent chapters.
For now, you can find the
complete documentation of all
UNIX calls, library routines and
commands in the man(ual)
pages, by typing:
> man command

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 115

1.e System Calls
Equivalent Windows system calls

Ta
ne

nb
au

m,
 A

. S
. (

20
01

)
M

od
er

n
Op

er
at

ing
 S

ys
te

m
s (

2n
d

Ed
itio

n)
.

The Win32 API calls roughly correspond to the UNIX calls

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 116

1.e System Calls
System programs

System programs are tools that help other programs
not strictly part of the O/S, but provide a convenient environment
for program development and execution (“utilities”)
they range from simple library functions to full-fledged editors
most users’ view of the operating system is defined by the
system programs, not the actual low-level system calls

Most important system programs
command interpreters (shells) – programs that launch programs
compilers, assemblers, linkers, loaders, debuggers – programs
that compile programs
text editors – programs that develop programs

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 117

1.e System Calls
System programs

A Bourne-Again Shell (bash) session on banyan.cse.unr.edu

Command-Line Interpreter (CLI) shells

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 118

1.e System Calls
System programs

Graphical User Interface (GUI) shells

One of the many X Window graphical user interfaces available for Linux

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 119

1.e System Calls
System programs

The “shell” is the outer envelope of the O/S
the shell is a program that presents a primary interface
between the user and the O/S
most often runs as a special user program when user logs in
Command-Line Interface (CLI) shells

the user types commands that are interpreted by the shell
as system calls, library functions or other programs

Graphical User Interface (GUI) shells
offer a metaphor of direct manipulation of graphical
images and widgets in addition to text
more user-friendly but less control
often wrapped around a CLI core

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 120

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems
a. Role of an O/S

b. O/S History and Features

c. Types of O/S

d. Major O/S Components

e. System Calls
System calls are the O/S API
Sample of UNIX system calls
Equivalent Windows system calls
System programs

f. O/S Software Architecture

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 121

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems
a. Role of an O/S

b. O/S History and Features

c. Types of O/S

d. Major O/S Components

e. System Calls

f. O/S Software Architecture
Why software architecture?
Monolithic structure
Layered structure
Microkernel & modular structure
Virtual machines

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 122

1.f Operating System Software Architecture
Why software architecture?

After our view of an O/S from the
outside (the system calls
interface), we take a look inside
and examine the different O/S
software structures that have
been tried.

Note: Good software architecture
principles apply to any software,
not just operating systems.

1.f Operating System Software Architecture
Why software architecture?

Operating systems have become huge complex beasts
Year System Code Size
1963
1964
1975
1990
2000 Windows NT 4.0 16 million SLOC

2002 Debian 3.0 104 million SLOC

2002
2000
2001 Red Hat Linux 7.1 30 million SLOC

2005

32,000 wordsCTSS
OS/360
Multics
Windows 3.1

Windows XP
Red Hat Linux 6.2

1 million instructions
20 million instructions
3 million SLOC

40 million SLOC
17 million SLOC

Debian 3.1 213 million SLOC

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 123

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 124

1.f Operating System Software Architecture
Why software architecture?

With code size come all the problems
O/S are chronically late in being delivered (new or upgrades)
O/S have latent bugs that show up and must be fixed
performance is often not what was expected
it has proven impossible to deploy an O/S that is not vulnerable
to security attacks

Hence the critical need for a well-engineered software
architecture

layers and/or modules with clean, minimal interfaces
the goal is that one part can be changed (fixed, upgraded,
expanded) without impacting the other parts

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 125

1.f Operating System Software Architecture
Why software architecture?

Well-defined interfaces allow part replacement without
impacting the surroundings

1.f Operating System Software Architecture
Monolithic structure

A famous bad example: MS-DOS Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

MS-DOS pseudolayer structure

initially written to provide
the most functionality in
the least space
started small and grew
beyond its original scope
levels not well separated:
programs could access
I/O devices directly
excuse: the hardware of
that time was limited (no
dual user/kernel mode)

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 126

1.f Operating System Software Architecture
Monolithic structure

A simple structuring model for a monolithic system

Another bad example: the original UNIX
“The Big Mess”: a collection of procedures that can call any of
the other procedures whenever they need to
no encapsulation, total visibility across the system
very minimal layering made of thick, monolithic layers

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 127

1.f Operating System Software Architecture
Monolithic structure

UNIX system structure

Another bad example: the original UNIX
enormous amount of functionality crammed into the kernel

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 128

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 129

1.f Operating System Software Architecture
Monolithic structure

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

The traditional UNIX kernel contains few “layers”

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 130

1.f Operating System Software Architecture
Layered structure

Monolithic operating systems
no one had experience in building truly large software systems
the problems caused by mutual dependence and interaction
were grossly underestimated
such lack of structure became unsustainable as O/S grew

Enter hierarchical layers and information abstraction
each layer is implemented exclusively using operations
provided by lower layers
it does not need to know how they are implemented
hence, lower layers hide the existence of certain data
structures, private operations and hardware from upper layers

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 131

1.f Operating System Software Architecture
Layered structure

famous example of
strictly layered
architecture:

Layers can be debugged and replaced independently
without bothering the other layers above and below

uses services
N

N–1

N+1
offers services

famous example of
strictly layered
architecture: the
TCP/IP networking
stack

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 132

1.f Operating System Software Architecture
Layered structure

shell

O/S

hardware

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Theoretical model of operating system design hierarchy

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 133

1.f Operating System Software Architecture
Layered structure

Major difficulty with layering
. . . appropriately defining the various layers!
layering is only possible if all function dependencies can be
sorted out into a Directed Acyclic Graph (DAG)
however there might be conflicts in the form of circular
dependencies (“cycles”)

Circular dependency on top of a DAG

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 134

1.f Operating System Software Architecture
Layered structure

Circular dependencies in an O/S organization
example: disk driver routines vs. CPU scheduler routines

the device driver for the backing store (disk space used
by virtual memory) may need to wait for I/O, thus invoke
the CPU-scheduling layer
the CPU scheduler may need the backing store driver for
swapping in and out parts of the table of active processes

Other difficulty: efficiency
the more layers, the more indirections from function to function
and the bigger the overhead in function calls

→ backlash against strict layering: return to fewer layers with
more functionality

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 135

1.f Operating System Software Architecture
Microkernel & modular structure

The microkernel approach
a microkernel is a reduced operating system core that contains
only essential O/S functions
the idea is to “defat” the kernel by moving up as much
functionality as possible from the kernel into user space
many services traditionally included in the O/S are now
external subsystems running as user processes

device drivers
file systems
virtual memory manager
windowing system
security services, etc.

1.f Operating System Software Architecture
Microkernel & modular structure

Layered O/S architecture vs. microkernel architecture

The microkernel approach

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 136

1.f Operating System Software Architecture
Microkernel & modular structure

User modules then communicate by message passing
the main function of the microkernel is to provide an interprocess
communication facility between the client programs and the
various services running in user space
the microkernel offers a uniform message-passing interface
MINIX (not Linux), Mach (NEXTSTEP, Mac OS X), QNX (embedded)

The client-server microkernel model

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 137

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 138

1.f Operating System Software Architecture
Microkernel & modular structure

Benefits of the microkernel approach
extensibility — it is easier to extend a microkernel-based O/S
as new services are added in user space, not in the kernel
portability — it is easier to port to a new CPU, as changes are
needed only in the microkernel, not in the other services
reliability & security — much less code is running in kernel
mode; failures in user-space services don’t affect kernel space

Detriments of the microkernel approach
again, performance overhead due to communication from user
space to kernel space
not always realistic: some functions (I/O) must remain in kernel
space, forcing a separation between “policy” and “mechanism”

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 139

1.f Operating System Software Architecture
Microkernel & modular structure

The modular approach
most modern operating systems implement kernel modules
this is similar to the object-oriented approach:

each core component is separate
each talks to the others over known interfaces
each is loadable as needed within the kernel

overall, modules are similar to layers but with more flexibility
modules are also similar to the microkernel approach, except
they are inside the kernel and don’t need message passing

1.f Operating System Software Architecture
Microkernel & modular structure

Modules are used in Solaris, Linux and Mac OS X

The Solaris loadable modules

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 140

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 141

1.f Operating System Software Architecture
Microkernel & modular structure

Note: Software development is not an
exact science but a trial-and-error
exploratory process. Ironically,
perfectly regular machines rely upon
intuitive human instructions. Design
patterns are an attempt to bridge
this gap by factoring out common
practice. They provide guidelines to
discipline the code, harness its
complexity, and bring it closer to the
ideals of modularity, scalability,
flexibility and robustness.

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 142

1.f Operating System Software Architecture
Virtual machines

A virtual machine provides an interface identical to the
underlying bare hardware

a VM takes the layered approach to its logical conclusion: it
treats hardware and the operating system kernel as though
they were all hardware
a VM-based O/S creates the illusion that processes are each
executing on their own private processor with their own private
(virtual) memory

→ a VM-based O/S does not provide a traditional O/S extension
of the underlying hardware but an exact copy of the bare
hardware, so that any traditional O/S can run on top of it
it can also provide a simulation of a 3rd party hardware

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 143

1.f Operating System Software Architecture
Virtual machines

The resources of the physical computer are shared to
create the virtual machines

CPU scheduling can create the appearance that users have
their own processor
spooling and a file system can provide virtual card readers and
virtual line printers
a normal user time-sharing terminal serves as the virtual
machine operator’s console
the VM can create more virtual disks (“minidisks”) than there
are physical drives

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 144

1.f Operating System Software Architecture
Virtual machines

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

Nonvirtual machine vs. virtual machines

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 145

1.f Operating System Software Architecture
Virtual machines

Advantages of virtual machines
the VM concept provides complete protection of system
resources since each virtual machine is isolated from all others
O/S research and development can be done on a VM without
disrupting the normal system operation
cross-platform portability and emulation; ex: a Motorola 68000
VM on top of a PowerPC, or an Intel VM on top of a SPARC

Disadvantages of virtual machines
the VM isolation permits no direct sharing of resources
VMs are difficult to implement due to the effort required to
provide an exact duplicate to the underlying machine (four
modes: physical kernel / user = { virtual kernel / user }, etc.)

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 146

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems
a. Role of an O/S

b. O/S History and Features

c. Types of O/S

d. Major O/S Components

e. System Calls

f. O/S Software Architecture
Why software architecture?
Monolithic structure
Layered structure
Microkernel & modular structure
Virtual machines

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 147

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems
a. Role of an O/S

b. O/S History and Features

c. Types of O/S

d. Major O/S Components

e. System Calls

f. O/S Software Architecture

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 148

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems
a. Role of an O/S

b. O/S History and Features

c. Types of O/S

d. Major O/S Components

e. System Calls

f. O/S Software Architecture

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 149

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems
a. Role of an O/S

b. O/S History and Features

c. Types of O/S

d. Major O/S Components

e. System Calls

f. O/S Software Architecture

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 150

Principles of Operating Systems
CS 446/646

0. Course Presentation

1. Introduction to Operating Systems

2. Processes

3. Memory Management

4. CPU Scheduling

5. Input/Output

6. File System

7. Case Studies

