Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems

e. System Calls

v System calls are the O/S API

v Sample of UNIX system calls

v Equivalent Windows system calls
v System programs

f. OIS Software Architecture
g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction

99

1l.e System Calls
System calls are the O/S API

» Location of the system calls in the Molay view

L
L
L

Molay, B. (2002) Understanding
Unix/Linux Programming (1st Edition).

i —

-

The system calls are the mandatory interface between the user programs and the O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 100

1l.e System Calls

System calls are the O/S API

» Location of the system calls in the Tanenbaum view

user space

Banking Airline Web
system reservation browser

Command

Compilers Editors interpreter

~ Application programs

System

System calls

| programs

kernel space

Operating system

Machine language

Microarchitecture

Physical devices

|

> Hardware

The system calls are the mandatory interface between the user programs and the O/S

9/8/2005

CS 446/646 - Principles of Operating Systems - 1. Introduction 101

1l.e System Calls
System calls are the O/S API

» All programs needing resources must use system calls

User programs

Library functions & programs
USET space ... fputs, getchar, Is, pwd, more . ..
|.. . fork, open, read System calls rm, chmod, kill . .. | the *middleman’s

kernel space ‘ Operating system ‘ counter”

v"system calls are the only entry points into the kernel and system

v most UNIX commands are actually library functions and utility
programs (e.g., shell interpreter) built on top of the system calls

v however, the distinction between library functions and system
calls is not critical to the programmer, only to the O/S designer

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 102

1l.e System Calls
System calls are the O/S API

int main(...)
{
iIT ((pid = fork(Q)) == 0) // create a process
{
fprintf(stdout, "Child pid: %i\n", getpid());
err = execvp(command, arguments); // execute child
// process
fprintf(stderr, "Child error: %i\n", errno);
exit(err);
+
else 1Tt (pid > 0) // we are in the
{ // parent process
fprintf(stdout, "Parent pid: %i\n", getpid());
pid2 = waitpid(pid, &status, 0); // wait for child
S // process
+
return O;
by

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction

103

1l.e System Calls
System calls are the O/S API

int main(int ac, char *av[])

{
it ((fp = fopenC*av, "r')) = NULL) { // open fTile
while (fgets(line, 512, fp)) { // read next line
iIT (hum_of lines == 24) { // i1s screen full?

while ((c = getchar()) '= EOF) { // prompt user

switch (¢) {

case "Q°": ... // prepare to quit
case " ": ... // prepare to show
S // one more screen
by
}
b
iIT (fputs(line, stdout) == EOF) // show line
exit(l); // or finish
}
num_of_lines++; // count line
¥
fclose(fp) // close fTile

Sample 2: implementing the more command with system calls and library functions

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 104

application
code

memory allocation
function mall loc

1l.e System Calls

System calls are the O/S API

user process

sbrk
system call

kernel

9/8/2005

application
code

/

C library
functions

system calls

Difference between C library functions and system calls

CS 446/646 - Principles of Operating Systems - 1. Introduction

1
1
|
1
1
1
|
1
1
: user process
1
1
1
|
1
1
1
|

kernel

105

1l.e System Calls
System calls are the O/S API

» System calls

v'system calls offer back-end, low-level services

v’ for example: sbrk only increases or decreases a process’s
address space by a specified number of bytes

» Library functions

v"library functions offer front-end services that contain higher-
level logic

allocation strategy

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 106

application
code

memory allocation
function mall loc

A
\

call function sbrk

1l.e System Calls
System calls are the O/S API

|

user process

TRAP (#sbrk)
system call instruction

kernel

9/8/2005

Note: In truth, the system call
functions are themselves utility
functions wrapping the actual
system trap instructions. A system
call function invokes the kernel
service of the same name by (a)
placing the arguments in registers
and (b) executing the machine
Instruction that will generate a
software interrupt in the kernel. 7

CS 446/646 - Principles of Operating Systems - 1. Introduction 107

1l.e System Calls
System calls are the O/S API

» Steps In making a system call

1. — 3. user program pushes Address
parameters onto stack

4. user prog. calls library function read

5. function read puts system call's code
number #read in a register

6. function executes TRAP User space 4

instruction: this switches to kernel
mode and jumps to fixed address

7. kernel program gets code # and
dispatches to call handler’s pointer

8. system call handler runs Kernel space

(Operating system)

9. control returns to user space

10.-11. read returns to user program,
which clears stack

4

OXFFFFFFFF _

AN

or

Return to caller] ,
T he k I Library
rap to the kerne procedure
5| Put code for read in register read
10
4
Increment SP 11 i
~ Call read
3| Pushfd User program
2| Push &buffer calling read
1| Push nbytes
6 9
% 7
) 7 8 | Syscall
pispatich i “| handler

11 steps in making a system call

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 108

1l.e System Calls
System calls are the O/S API

Note: 3 methods to pass parameters
between a process and the O/S

v pass parameters in registers

v' store parameters in a table in
memory, and pass table address
as a parameter in a register

v' parameters pushed (stored) onto

the stack by the program, and
popped off the stack by the O/S

1l.e System Calls
System calls are the O/S API

» Main categories of system calls
v' process creation and management

v file access
v" directory and file-system management

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 110

1l.e System Calls
Sample of UNIX system calls

» A few common system calls for process control

v

v

v

9/8/2005

pid = fork()
create a child process identical to the parent
err = execve(name, argv, ...)

replace a process’s core image
pid = waitpid(pid, ...)
wait for a child process to terminate

exit(status)
terminate process execution, returning status

err = kill(pid, signal)
send a signal to a process

CS 446/646 - Principles of Operating Systems - 1. Introduction 111

1l.e System Calls
Sample of UNIX system calls

» A few common system calls for file access

v

v

9/8/2005

fd = open(file, how, ...)

open a file for reading, writing or both

err = close(fd)

close an open file

n = read/write(fd, buffer, nbytes)
read (write) data from a file (buffer) into a buffer (file)
err = stat(name, &buf)

get a file’s status information

err = chmod(name, mode)

change a file’s protection bits

CS 446/646 - Principles of Operating Systems - 1. Introduction 112

1l.e System Calls
Sample of UNIX system calls

» A few common system calls for directory management

v

v

v

9/8/2005

err = mkdir(name, mode)

create a new directory

err = rmdir(name)

remove an empty directory

err = chdir{dirname)

change the working directory

err = link(hamel, name2)
create a new entry, name2, pointing to namel
err = mount(name, path, how)
mount a file system

CS 446/646 - Principles of Operating Systems - 1. Introduction 113

1l.e System Calls
Sample of UNIX system calls

Note: The detailed effect of
these commands will become
clearer in subsequent chapters.
For now, you can find the
complete documentation of all
UNIX calls, library routines and
commands in the man(ual)

pages, by typing:
> man command 7

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 114

9/8/2005

1l.e System Calls
Equivalent Windows system calls

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close afile
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemaoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

The Win32 API calls roughly correspond to the UNIX calls

CS 446/646 - Principles of Operating Systems - 1. Introduction

115

1l.e System Calls
System programs

» System programs are tools that help other programs

v" not strictly part of the O/S, but provide a convenient environment
for program development and execution (“utilities”)

v"they range from simple library functions to full-fledged editors

v most users’ view of the operating system is defined by the
system programs, not the actual low-level system calls

» Most important system programs
v command interpreters (shells) — programs that launch programs

v'compilers, assemblers, linkers, loaders, debuggers — programs
that compile programs

v' text editors — programs that develop programs

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 116

1l.e System Calls
System programs

» Command-Line Interpreter (CLI) shells

1= -1 public_html

A Bourne-Again Shell (bash) session on banyan.cse.unr.edu

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 117

1l.e System Calls
System programs

» Graphical User Interface (GUI) shells

9/8/2005

J5tuff L Manga;

W Main Page - Wil

Main Page
Community pertal
Current events
Recgnt changas
Random article
Help § Contact us
Donatisns

search
Go | Search

taalbax

® What hnks here

& Related changes

= Upload file

B Find:

Done

One of the many X Window graphical user interfaces available for Linux

|*| @oo |IGL
om G2 The RPG Realm @ w.,
ES dia Tutorial (Wikipedsa links. ..

& MMz3 ey telk preferences mywatchist my contributions b sut -

view source | histery

From Wikipedia, the free encyclopedia.

Welcome to Wikipedia, the fre

watch

e-cont encyclopedia that
a

anyone can edit. RS a
in this Enghsh version. started in 2001, we are curme Fle Edit Search Options Help

_— |\

CULTUSE | GEQGRAPHY | HISTORY | LIFE | MATHE|Z | 0o o8 FWM-Crystal function hles and needed modules
Browse wikiecky - drticle ovarviews - gPipeRead cat $[FVWM_CONFGDIR] functions/¥

Today's featured article

The Antarctic krill is 8 spacil
found in the Antarctic waters
Southem Ocean. Antarctic kil
shomg-like inciebrates that
large schools, called pramms.
somatimas reaching densities
10.000-30,000 indhidual arimals par cublc mel
fead directly on rrinute phtoplankton, thereby
primary production snargy that the phytoplankt

{Module FewmCommands

L e fesim

Ble Edr Seasch QOptions Help

POPUR R E O

+ %5fvwm_icon]famarok. pngte-utiities” |
pepup Menulitiities

+ Sk IhaT_icon]ilinie prghetsystem® |
popup MenuSystem

[+ g [fwm_icen]igentoobos png¥ Fuwm-Crystal® |
popup Pansieru

DestroyMany MenuTarminals

pddToMers MenuTarminals

'+ % $ifuwm_icon]itenm. pngitEterm |
axec axec Elerm

+ % ihvwm_icon]faterm. prg dderm® |
ERAEC aHEL Alerm

+ W $fvam_icenliconscle. pngsTkon sl |
exoc exec konsale

+ % §[fwwm_icon]itenm. prighe st erm” |
axae anet Karm

+ Wehifuwm_icon]iaterm.png " gnome-terminal® |
AKAC AXIL GRAMALarmenal

CS 446/646 - Principles of Operating Systems - 1. Introduction

118

1l.e System Calls
System programs

» The “shell” is the outer envelope of the O/S

v

v
v

9/8/2005

the shell is a program that presents a primary interface
between the user and the O/S

most often runs as a special user program when user logs in
Command-Line Interface (CLI) shells

= the user types commands that are interpreted by the shell
as system calls, library functions or other programs

Graphical User Interface (GUI) shells

= offer a metaphor of direct manipulation of graphical
Images and widgets in addition to text

= more user-friendly but less control
= often wrapped around a CLI core

CS 446/646 - Principles of Operating Systems - 1. Introduction 119

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems

e. System Calls

v System calls are the O/S API

v Sample of UNIX system calls

v" Equivalent Windows system calls
v System programs

f. OIS Software Architecture
g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 120

Principles of Operating Systems

CS 446/646

1. Introduction to Operating Systems

f. OJS Software Architecture

v
v
v
v

Why software architecture?
Monolithic structure

Layered structure

Microkernel & modular structure
Virtual machines

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction

121

1.f Operating System Software Architecture
Why software architecture?

After our view of an O/S from the
outside (the system calls
Interface), we take a look inside
and examine the different O/S
software structures that have
been tried.

Note: Good software architecture
principles apply to any software,

not just operating systems. 7

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 122

1.f Operating System Software Architecture
Why software architecture?

» Operating systems have become huge complex beasts

Year System Code Size
1963 | CTSS 32,000 words

1964 | OS/360 1 million instructions
1975 | Multics 20 million instructions
1990 | Windows 3.1 3 million SLOC

2000 | Windows NT 4.0 16 million SLOC
2002 | Windows XP 40 million SLOC

2000 | RedHatLinux 6.2 |17 million SLOC
2001 | Red Hat Linux 7.1 | 30 million SLOC
2002 | Debian 3.0 104 million SLOC
2005 | Debian 3.1 213 million SLOC

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 123

1.f Operating System Software Architecture
Why software architecture?

» With code size come all the problems

v" OIS are chronically late in being delivered (new or upgrades)
O/S have latent bugs that show up and must be fixed
performance Is often not what was expected

it has proven impossible to deploy an O/S that is not vulnerable
to security attacks

NN X

» Hence the critical need for a well-engineered software
architecture

v layers and/or modules with clean, minimal interfaces

v" the goal is that one part can be changed (fixed, upgraded,
expanded) without impacting the other parts

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 124

1.f Operating System Software Architecture
Why software architecture?

» Well-defined interfaces allow part replacement without
iImpacting the surroundings

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 125

1.f Operating System Software Architecture

Monolithic structure

» A famous bad example: MS-DOS

v'initially written to provide

9/8/2005

the most functionality in ‘ application program
the least space

started small and grew y I
beyond its original scope

levels not well separated:
programs could access ke

: : MS-DOS device drivers
/0 devices directly

excuse: the hardware of h V. / “

resident system program

that time was limited (no ROM BIOS device drivers
dual user/kernel mode)

MS-DOS pseudolayer structure

CS 446/646 - Principles of Operating Systems - 1. Introduction 126

1.f Operating System Software Architecture
Monolithic structure

» Another bad example: the original UNIX

v “The Big Mess”: a collection of procedures that can call any of
the other procedures whenever they need to

v" no encapsulation, total visibility across the system
v"very minimal layering made of thick, monolithic layers

Main

procedure

Service

procedures

Utility

procedures

A simple structuring model for a monolithic system

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 127

1.f Operating System Software Architecture
Monolithic structure

» Another bad example: the original UNIX
v"enormous amount of functionality crammed into the kernel

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block I/O page replacement
character I/0 system system demand paging

disk and tape drivers virtual memory

terminal drivers

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

UNIX system structure

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 128

1.f

9/8/2005

Operating System Software Architecture
Monolithic structure

User Programs

TI‘HE
AL

User Level

44444
"y
e

Kernel Level

Taw,
b
L
"
LT

System Call Interface

Fy

File Subsystem

Inter-process

h

Y

h
|B111f|31‘ Cﬁrhel
F

h

character

block

Device

Drivers

'y

Fy

communication
Process
Control Scheduler
Subsystem
Memory
management

Hardware Control

Kernel Level

Hardware Level

Hardware

The traditional UNIX kernel contains few “layers”

CS 446/646 - Principles of Operating Systems - 1. Introduction

129

1.f Operating System Software Architecture
Layered structure

» Monolithic operating systems
v no one had experience in building truly large software systems

v"the problems caused by mutual dependence and interaction
were grossly underestimated

v"such lack of structure became unsustainable as O/S grew

» Enter hierarchical layers and information abstraction

v'each layer is implemented exclusively using operations
provided by lower layers

v" it does not need to know how they are implemented

v"hence, lower layers hide the existence of certain data
structures, private operations and hardware from upper layers

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 130

1.f Operating System Software Architecture
Layered structure

» Layers can be debugged and replaced independently
without bothering the other layers above and below

v famous example of

strictly layered >
architecture: the / N
TCP/IP netWOrking ~ offers services
stack —~—— N |
/ uses services
| N-1
e

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 131

1.f Operating System Software Architecture
Layered structure

Level Name Ohjects Example Operations
\.‘l‘\.‘\.‘\.‘\.‘l‘\.‘\.‘l‘\.‘l‘\.‘\.‘l‘\.‘l‘\‘\.‘\.‘\.\‘l
S h e | | : 13 Shell User programming Statements in shell language :
5 environment \
(12 User processes User processes Quut, kill, suspend, resume
11 Directories Directories Create, destroy, attach,
___ detach, search, ist |

10 Devices External devices, such as Open, close, read, write
printers, displays, and
keyboards

/ 9 File system Files Create, destroy, open, close,
O S read, write
2 Communications Pipes Create, destroy, open, close,
read, write
7 Virtual memory Segments, pages Read, write, fetch
6] Local secondary store Blocks of data, device channels Read, write, allocate, free |
35 Primitive processes Primitive processes, Suspend, resume, wait, signal
K semaphores, ready list
4 Interrupts Intermupt-handling programs Invoke, mask, unmask, retry
3 Procedures Procedures, call stack, display Mark stack, call, return
h ar dW are 2 Instruction set Evaluation stack, Load, store, add, subtract,

microprogram interpreter, branch
scalar and array data

1 Electronic circuits Registers, gates, buses, efc. Clear, transfer, activate,

complement

Theoretical model of operating system design hierarchy

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 132

1.f Operating System Software Architecture
Layered structure

» Major difficulty with layering
v’ ... appropriately defining the various layers!

v"layering is only possible if all function dependencies can be
sorted out into a Directed Acyclic Graph (DAG)

v" however there might be conflicts in the form of circular
dependencies (“cycles”)

, e 3
@.@

Circular dependency on top of a DAG

—

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 133

1.f Operating System Software Architecture
Layered structure

» Circular dependencies in an O/S organization
v'example: disk driver routines vs. CPU scheduler routines

= the device driver for the backing store (disk space used
by virtual memory) may need to wait for I/O, thus invoke
the CPU-scheduling layer

= the CPU scheduler may need the backing store driver for
swapping in and out parts of the table of active processes

» Other difficulty: efficiency

v"the more layers, the more indirections from function to function
and the bigger the overhead in function calls

— Dbacklash against strict layering: return to fewer layers with
more functionality

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 134

1.f Operating System Software Architecture
Microkernel & modular structure

» The microkernel approach

v amicrokernel is a reduced operating system core that contains
only essential O/S functions

v' theideais to “defat” the kernel by moving up as much
functionality as possible from the kernel into user space

v many services traditionally included in the O/S are now
external subsystems running as user processes

= device drivers

= file systems

= virtual memory manager
= windowing system

= security services, etc.

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 135

1.f Operating System Software Architecture

Microkernel & modular structure

» The microkernel approach

User
Mode

Kernel
Mode

9/8/2005

C d P v
Users I el ¢ |* i
1 v i 0 r
e i 1 c t
File System 1 S P L
t e 5 a
T |
: . User s | °
Interprocess Communication , p o
Mode r s o o] - s | m
0 i v e e
I/O and Device Management ¢ Ve |t |
g e - v o
5 r 1 [= r
Virtual Memory 5 s r v LA
e
el Kernel .
Primitive Process Management __ Microkernel
Mode
(a) Layered kernel (b) Microkernel

Layered O/S architecture vs. microkernel architecture

CS 446/646 - Principles of Operating Systems - 1. Introduction 136

1.f Operating System Software Architecture
Microkernel & modular structure

» User modules then communicate by message passing

v"the main function of the microkernel is to provide an interprocess
communication facility between the client programs and the
various Services running in user space

v"the microkernel offers a uniform message-passing interface
v" MINIX (not Linux), Mach (NEXTSTEP, Mac OS X), QNX (embedded)

,, -
- - L - .
Client Client y Process | Terminal . File Memory | L\ jeer mode
process | process | server server server server
\ . A Kernel mode
Microkernel * }

Client obtains
service by

sending messages
to server processes

The client-server microkernel model

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 137

1.f Operating System Software Architecture

Microkernel & modular structure

» Benefits of the microkernel approach

v

v

v

extensibility — it is easier to extend a microkernel-based O/S
as new services are added in user space, not in the kernel

portability — it is easier to port to a new CPU, as changes are
needed only in the microkernel, not in the other services

reliability & security — much less code is running in kernel
mode; failures in user-space services don't affect kernel space

» Detriments of the microkernel approach

v

v

9/8/2005

again, performance overhead due to communication from user
space to kernel space

not always realistic: some functions (I/O) must remain in kernel
space, forcing a separation between “policy” and “mechanism”

CS 446/646 - Principles of Operating Systems - 1. Introduction 138

1.f Operating System Software Architecture
Microkernel & modular structure

» The modular approach
v most modern operating systems implement kernel modules
v" this is similar to the object-oriented approach:
= each core component Is separate
= each talks to the others over known interfaces
= each s loadable as needed within the kernel
v"overall, modules are similar to layers but with more flexibility

v modules are also similar to the microkernel approach, except
they are inside the kernel and don’t need message passing

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 139

1.f Operating System Software Architecture
Microkernel & modular structure

» Modules are used in Solaris, Linux and Mac OS X

scheduling

device and classes

bus drivers

core solaris
miscellaneous kernel |0tadab|e”

modules system calls
STRE AMS E xecutable
modules formats

The Solaris loadable modules

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 140

1.f Operating System Software Architecture

9/8/2005

Microkernel & modular structure

Note: Software development is not an
exact science but a trial-and-error
exploratory process. Ironically,
perfectly regular machines rely upon
Intuitive human instructions. Design
patterns are an attempt to bridge
this gap by factoring out common
practice. They provide guidelines to
discipline the code, harness its
complexity, and bring it closer to the

Ideals of modularity, scalability,
flexibility and robustness. 7

CS 446/646 - Principles of Operating Systems - 1. Introduction

141

1.f Operating System Software Architecture
Virtual machines

» A virtual machine provides an interface identical to the
underlying bare hardware

v a VM takes the layered approach to its logical conclusion: it
treats hardware and the operating system kernel as though
they were all hardware

v aVM-based O/S creates the illusion that processes are each

executing on their own private processor with their own private
(virtual) memory

— a VM-based O/S does not provide a traditional O/S extension
of the underlying hardware but an exact copy of the bare
hardware, so that any traditional O/S can run on top of it

v" it can also provide a simulation of a 3rd party hardware

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 142

1.f Operating System Software Architecture

Virtual machines

» The resources of the physical computer are shared to
create the virtual machines

v

v

9/8/2005

CPU scheduling can create the appearance that users have
their own processor

spooling and a file system can provide virtual card readers and
virtual line printers

a normal user time-sharing terminal serves as the virtual
machine operator’s console

the VM can create more virtual disks (“minidisks”) than there
are physical drives

CS 446/646 - Principles of Operating Systems - 1. Introduction 143

1.f

9/8/2005

Operating System Software Architecture

Virtual machines

processes
processes
processes processes
a programming - kernel ke;'lel kernel
+ interface
‘ | VM1 VM2 VM3
erne
virtual machine
implementation
h
el B hardware

Nonvirtual machine vs. virtual machines

CS 446/646 - Principles of Operating Systems - 1. Introduction

144

1.f Operating System Software Architecture
Virtual machines

» Advantages of virtual machines

v"the VM concept provides complete protection of system
resources since each virtual machine is isolated from all others

v OIS research and development can be done on a VM without
disrupting the normal system operation

v' cross-platform portability and emulation; ex: a Motorola 68000
VM on top of a PowerPC, or an Intel VM on top of a SPARC

» Disadvantages of virtual machines
v" the VM isolation permits no direct sharing of resources

v VMs are difficult to implement due to the effort required to
provide an exact duplicate to the underlying machine (four
modes: physical kernel / user = { virtual kernel / user }, etc.)

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 145

Principles of Operating Systems

CS 446/646

1. Introduction to Operating Systems

f. OIS Software Architecture

v
v
v
v

Why software architecture?
Monolithic structure

Layered structure

Microkernel & modular structure
Virtual machines

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction

146

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 147

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems

g. Examples of O/S

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 148

Principles of Operating Systems
CS 446/646

1. Introduction to Operating Systems

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 149

Principles of Operating Systems
CS 446/646

Processes

Memory Management
CPU Scheduling
Input/Output

File System

N o 0ok~ WD

Case Studies

9/8/2005 CS 446/646 - Principles of Operating Systems - 1. Introduction 150

