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Abstract A shape-recognition method is proposed, inspired hvm the dynamic-link theoly of 
van der Malsburg (1981). The quality of a match between two images is assessed through 
an elmtic cost functional; the minimal value reached by the cost over a suitably-defined space 
of maps is viewed as a distance between these WO images. Experiments on nemt-neighbour 
classification of handwritten numerals are presented, using a mmputationally effective procedure 
for finding a reliable estimate of the matching distance. 

1. Introduction 

It has been proposed (von der Malsburg 1981, 1987, von der Malsburg and Bienenstock 
1986) that the brain may represent dynamical bonds between entities by using suitably 
defined accurate temporal relationships between neural activity patterns. This idea has 
recently become a focus of interest, mainly for its potential to solve the so-called binding-or 
segmentation-problem for neural networks. Equally attractive, however, is the suggestion 
(von der Malsburg 1981) that the brain may use dynamical links-in the form of accurate 
temporal relationships between the firings of neurons and possibly fast synaptic plasticity- 
to implement relational descriptions of objects and relation-preserving maps between such 
descriptions; relational descriptions and relation-preserving maps are likely to be required 
in many cognitive functions, e.g. perception. 

A literal numerical implementation of these ideas in terms of accurate neuronal spiking 
and fast synaptic plasticity would be impractical. Thus, shape-recognition models inspired 
from the dynamical-link theory (e.g. Bienenstock and von der Malsburg 1987, Lades et al 
1993) have generally kept the spirit of the approach, that of a simple, relatively low-level, 
relational description using dynamical links, and adapted it in various ways to the problem 
at hand. In this paper, we propose a formulation using a computationally efficient version 
of elastic matching (Burr 1980, Hinton er al 1992). An outline of our approach as well as 
preliminary results have been presented elsewhere (Bienenstock and Doursat 1989, 1991), 
and a very similar model has been applied to other recognition problems (Buhmann et al 
1989, Lades et al 1993). 

In the context of automated pattern recognition, relational-matching and deformable- 
template methods have been proposed in the past under a variety of forms (e.g. Bajcsy and 
Kovacic 1989, Grenander et al 1990, Amit et al 1991, Hinton er al 1992, Dickinson et nl 
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1992); see also Hummel and Biederman (1992) for an example of a hierarchical relational- 
matching model inspired from psychological data and from the dynamical-link theory. 
Relational-matching methods proceed roughly as foUows. A collection of prototype objects 
is defined, each in terms of relations between object subparts, e.g. local features. Upon 
presentation of an unknown object to recognize, one attempts to build relation-preserving 
maps between the prototypes and this object, described in the same relational format as the 
prototypes. The object is recognized-or not recognized-on the basis of the best relation- 
preserving map(s) found. This strategy sometimes tums out to be impractical, as it may 
require to search through a very large space of maps. 

In the last few years, the task of handwritten-character recognition has become a 
benchmark for algorithms of pattern recognition, whether neurally inspired (e.g. Le Cun 
et al 1989, Martin and Pittman 1991) or not (e.g. Bozinovic and Srihari 1989, Kundu et al 
1989, Simard er al 1993). Due to the computational difficulty just mentioned, relational- 
matching methods are not widely used; see, however, Burr (1980), Hinton etal (1992), and, 
in a similar spirit, Simard et al (1993). More popular are methods which rely on a blend of 
feature-extraction techniques followed by conventional statistical classifiers or feedforward 
neural networks. 

The elastic-matching approach presented in this paper can be applied to handwritten- 
character recognition by defining each character in terms of geometric relations between its 
elementary constituents, i.e. image pixels. Matching is then invariant with respect to shifts, 
and relatively tolerant of mild rotations and rubber-sheet deformations. As assessed on a 
medium-size database, this yields good classification performances, taking into account the 
simplicity of the model relative to alternative methods recently proposed for this task (e.g. 
Hinton et a[ 1992, Simard et al 1993). 

The plan of the paper is as follows. Section 2 defines a matching distance between 
two images X and X’ as the minimum value of a suitably defined cost functional over a 
family of maps from X to X’. The cost of a map is an integrated measure of the amount of 
deformation effected by this map; matching is referred to as elastic because of the quadratic 
form of local confributions to the cost. As a strategy for finding a map realizing the absolute 
minimum of the cost is not available, we use a suboptimal search algorithm, which provides 
a good approximation to this minimum; the algorithm is outlined in section 3 and described 
in more detail in the appendix. Statistical experiments are presented in section 4 nearest- 
neighbour classification is used with our elasticmatching distance instead of, for example, 
Euclidean distance. Section 5 compares our biologically inspired approach to the methods 
for handwritten-digit recognition proposed by Hinton et al (1992) and Simard et al (1993); 
section 6 is a brief discussion of the model in statistical and biological contexts. 

2. The elastic-matching distance 

We consider a binary-valued image X on the square lattice S; the value of X at site (pixel) 
s E S is denoted X(s). We are interested in images of handwritten numerals, where, by 
convention, pixel value 1 stands for ‘black‘ or ‘numeral‘, and pixel value 0 stands for 
‘white’, or ‘background’. There are ten numeral classes numbered 0 to 9, and numerals 
within a given class may come in a variety of shapes. As a result, the spread of a given class 
as assessed by pixelwise distance, i.e. Euclidean distance in X-space, may be considerable. 

Our goal is to endow the space of images on S with an alternative metric &(X, X’) that 
will reduce this intra-class spread as much as possible. In section 6, we shall characterize 
this strategy as the a priori introduction of a suitable bias in the problem. Ideally, one 
would like any two images belonging to the same class to be closer to each other, in this 
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new metric, than any two images belonging to a different class. With such a metric, one 
prototype per class would be enough to achieve error-free classification, using for instance 
the first-nearest-neighbour method. Unfortunately, one would be hard-pressed to invent a 
metric @(X, X‘) satisfying this requirement. We shall therefore settle for a more modest 
goal: the metric p should be such ?hat, in general, ,u(X, X’) is small whenever X and X‘ 
belong to the same class, and p ( X ,  X’) is large for X and X’ belonging to different classes. 

Now given two images X and X‘ belonging to the same class, i.e. distinct handwritten 
realizations of the same numeral, one may often view X’ as a deformion of X (equivalently 
X as a deformation of X‘), where the deformation is a composition of rigid transformations 
(a shift and a small rotation) with moderate non-rigid distortions. The metric p ( X ,  X’) 
we shall define is, roughly, the amount of deformation required to transform X into X’. 
This definition should be such that: (i) it captures most variations observed in handwritten 
numerals and only those, and (ii) the computation of p ( X ,  X? can be effectively carried 
out. 

For a given image X and a given integer m, let SX be the union of the black pixels in 
X (the numeral itself) with apadding of white pixels of width m around these black pixels; 
if m = 0, SX contains no white pixels. For any two images X and X’ on S, a map f from 
SX to S is called permissible if it preserves pixel values, that is, if X’( f ( s ) )  = X ( s )  for 
all s in Sx; the family of all permissible maps f from X to X’ is denoted P x ~ .  We wish 
to measure, for any permissible map f ,  the amount of deformation effected by f .  To this 
end, we define a cost, or energy, functional H ( f )  = H,(f) + ~ H 2 ( f )  on P X x f .  The first 
part of the functional, HI (f), measures the deformation effected by f ;  K is a non-negative 
parameter and the second part, H?(f). measures the departure o f f  from injectivity. 

Specifically, 

Hl(f) = II e - t )  - (fD) - f ( tN 112 . 
s,rcsw. Ir-lH=I 

Here, the symbol - is used to denote subtraction between sites considered as points in R2. 
Thus, HI is the sum, over all pairs of neighbours s and t in SX. of the squared norm of 
the difference between the vector from point t to point s and the vector from point f ( t )  
to point f(s). Provided SX is connected, Hl(f) is 0 if and only if f(s) - f ( t )  = s - t 
for any two sites s and t in SX, i.e. if and only if f is, globally, a shift. Note that HI is 
locally composed in the topology of SX: two sites s and t in the domain o f f  interact-they 
contribute to Hl-only  if they are nearest neighbours. The penalty contributed by a pair 
of neighbours is quadratic in the amount of distortion effected there. The main reason for 
choosing this quadratic form is computational convenience (see next section), but it can also 
be interpreted as a form of elartic energy (think of f as a deformation acting on a rubber 
sheet). 

In short, the first part of the functional H-which we seek to minimize over all 
permissible maps-embodies a collection of independent soft constraints on f, which 
collectively tend to make f a shift. In particular, HI penalizes rotations; the penalty is 
small for small-amplitude rotations, and increases rapidly for larger ones. 

The second term in H ( f ) ,  also a collection of quadratic soft constraints, is defined as 
follows: 

E(€S  

where I A 1 is the size of set A, and U+, the positive part of U, is U if U > 0, 0 otherwise. 
This term is 0 if and only if for each s’ in S the set f-’(s’) has at most one element in it, 
that is, f is injective. This second term does not play a crucial role in the definition of the 
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distance; in effect, if the first term vanishes-f i s  a shift-so does the second. However, 
including H2 was found to improve classification performance (see section 4). 

Note that the pixel-value constraint, f E Pxy,  could have been implemented as a soft 
constraint, in the style of HI and Hz. However, numerical experiments (not reported in 
the present paper) showed no clear advantage in doing so, and a hard constraint was found 
preferable for computational reasons. 

Given two images X and X‘, we may now tentatively define an elastic distance between 
them as the minimum value reached by H over all permissible maps: 
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A(X, X’) = min H ( f ) .  
I E%’ 

This A, however, is not quite a metric. In particular, it generally is not the case that 
h(X, X’) = A(X’, X). Also, A has the following ‘subset problem’. Assume that X and X’ 
are two numerals belonging to different classes such that X is (approximately) a subset of 
X’, i.e. such that there exists a map f in P,, that is (approximately) a shift. This may 
for instance occur with the numerals ‘3’ and ‘8’ (see figure 5). Under these conditions, 
A(X, X’) is small, possibly smaller than A(X, X”) for some X” in the same class as X. This 
is clearly undesirable. 

These two problems may be solved by symmetrizing A as follows: 

b(X, X’) = max{A(X, X’), A(X’, X)], 
We shall illustrate in the next section the working of p on the subset problemt, 

3. Computing the elastic-matching distance 

Computing the elastic-matching distance p(X, X’) between two numerals X and X‘ entails 
the minimizing of H over two spaces of permissible maps, Pxx. and P,,,. These spaces 
are clearly too large to allow exhaustive search. We shall therefore content ourselves 
with an approximation, a suboptimal f .  The present section outlines a computationally 
effective method for finding such a suboptimal solution; a more detailed description of the 
algorithm is given in the appendix. In the next section, we shall show that the approximated 
elastic-matching distance yields good classification performances, and we shall argue that 
these performances are probably nearly as good as would be obtained with the true elastic- 
matching distance if this were available. 

As remarked above, the first term in the cost functional H is made up of a sum of local 
contributions, as each sites interacts only with its nearest neighbours in Sx. This suggests a 
straightforward iterative-improvemenG ‘greedy’, procedure for minimizing f over the space 
of permissible maps Pxx,. Step k in this procedure consists in visiting a ‘site s = sk in 
SX and updating f at s while keeping it constant at all t # s. Consider, for a moment, 
only HI  and ignore Hz. The only sites t # s that matter are then the four neighbours of s: 
ti, i = I ,  . . . , 4  (here we assume that s is an interior point of Sx). Due to the quadratic form 
of HI, the optimal value of f at s given f at the four neighbours of s is the centre of mass 
of these four values: S = E:=, f (ti) (see appendix, equation (Al)). However, S is not 
necessarily a lattice point, nor does it necessarily satisfy the pixel constraint X‘(S) = X(s) 
if it happens to be a lattice point. We also need to take into account the second term HZ in 
the cost to find the huly optimal f (s). 

t The function w is still not quite a metric. 8s it does not necessarily satisfy the triangle inequality. This is of 
little practical incidence; it can actually be remedied by adding a positive constant C to every p(X.  X’) such that 
& ( X .  X‘) > 0. 
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We therefore proceed as follows. After having computed S, we visit all sites s’ in S 
that satisfy X’(s‘) = X ( s ) ,  in order of increasing distance from i. For each site s’ visited, 
we compute g(s‘). the total change in H resulting from moving f (s) from 3 to SI. The 
optimal s’ is the site that yields the smallest g; we know when to stop the search because 
the HI-component in g(s‘) is quadratic in 11 s’- S 11. 

This procedure allows us to find, in a computationally effective way, the H-optimal 
value of f at site s in SX ghen f at all sites t # s in SX. Applying this local update 
scheme iteratively will in general yield convergence to a local minimum of H in the space 
of permissible maps, local in the sense of the topology defined by this greedy single-update 
scheme: there will be no guarantee that the solution reached is the true optimum. Moreover, 
as with all such greedy algorithms, one should expect high sensitivity to initial conditions. 
The local minimum reached will also depend on the visitation sequence for sites s in 
SX. However, numerical experiments (see section 4 )  show that classification based on this 
approximated elastic distance is quite robust. As expected, the single most important factor 
is the initialization. For instance, if the two images X and X’ are ‘Vs, say ~X = X‘, it is 
easy to initialize the algorithm in the ‘wrong’ way, so that the top circle of the ‘8’ in X 

- will map to the bottom circle of the ‘8’ in X‘ and vice versa; such a map corresponds to 
a local minimum of the energy, with a fairly high cost coming from the mismatch at the 
centre of X. 

In the experiments reported in section 4, we used the following simple initialization 
procedure, which reliably eliminates the danger of ending in a iocal energy minimum of the 
type just described. The map f is first defined on a small number q of randomly chosen 
black sites SI, s2, . . . . sq E SX; typically, q is about one tenth of the number of black sites 
in SX. This is done using the following simple alignment procedure. Let c ( X ) ,  resp. c(X’), 
be the centre of mass of the set of black pixels in X, resp. X’; c (X)  and c(X’) are generally 
not lattice points. We then define f(si), i = 1, . . . , q,  to be the lattice point s’ nearesi to 
st + c(X‘) - c (X)  which satisfies X’(s’) = 1. ‘After f has been defined in this way on 
q initial sites in SX, we extend it, site-by-site, to the rest of SX using the greedy update 
scheme described above (see appendix for details). 

Since this initialization procedure does use the update process (except on a small number 
of sites), we shall refer to it as ‘iteration 0’ of the optimization. Further iterations consist in 
re-updating f once on all sites s E SX, including the first q (in the same order as before). 
We shall see in section 4 that for purposes of classification iteration 0 is by far the most 

Before we tun  to classification experiments, we illustrate with a few figures the working 
of the optimization algorithm. Figure 1 shows the successive steps in iteration 0 for the 
matching of two numerals belonging to two-different classes; the match f reached at the 
end of iteration 0 (panel C) is a severe distortion, heavily penalized by H .  Figure 2 shows 
the result of further optimization (10 iterations) on this matching problem, as well as on 
the matching of two numerals that belong to the same class and are indeed quite similar. 
In the latter case, the value of H reached is of course much lower; it is close-possibly 
equal-to the global minimum for this problem. In both situations. the optimization process 
has converged; the transformations shown correspond to local minima of N. 

Figure 3 illustrates the local minima reached for the same two matching problems 
as in figure 2, but this time the numerals X and X’ have first been thinned, using a 
straightforward thinning algorithm; this reduces substantially the size of SX, hence the 
amount of computation required. Still with thinned numerals, figure 4 illustrates the result 
of the matching algorithm with a larger padding of white pixels (m = 5 instead of 1 in 
the previous figures), resulting in a much larger domain set TX; as we shall see in the next 

important. 
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Figure 1. Three steps in iteration 0 
('initialization') of the elactic-matching 
pmcess. An instance of nu"I  '5' 
is to he mapped on an instance of 
numeral T In the fint step (panel 
A. fight) the numerals are registered so 
that the two centres of mass coincide 
(circled node). In the second step 
(panel B) 10 randomly chosen black 
nodes in numeral ' 5 '  (circled nodes. left) 
are mapped (right) onto the respective 
closest black nodes in numeral '1'; the 
images of all other nodes arc unchanged. 
In the third step. each remaining nade 
in numeral '5 ' ,  black as well as white, 
is visited once and its image updated 
according to a greedy update algorithm 
('elatic' relaxation into the centre of 
mass of current images of neighbours). 
Panel C (right) shows the outcome of 
this pmcess, i.e. the image, under the 
resulting map f. of the graph SX where 
X is numeral ' 5 ' .  Note that: (i) 
all pixel-value constraints are obeyed; 
(ii) considerable deformation is effected 
by f; and (iii) images of different 
nodes often overlap (whenever this is the 
case. these image nodes arc represented 
slightly offset from each other). The 
total cost incurred is H ( f )  = 878. 

' 

Figure 2. Local minima of the cost 
functional. Panel A shows the result 
of 10 further iterations-resulting in 
convergence to a local minimu-on the 
matching problem of figure I: cost is 
H ( f )  = 684. Panel B shows. under 
the same conditions. the optimal map of 
a numeral '6' onto a slightly different 
realization of the same numeral. with a 
resulting cost of 88. 

section, the width of the padding has little effect on classification performance. Finally, 
figure 5 shows an instance of the subset problem mentioned in section 2: the optimal map 
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Figum 3. Elastic matching behueen 
thinned numerals. Except for thinning. 
the numerals and parameters are the 
same as in figure 2. The values of 
H reached are 478 (panel A) and 73 
(panel B). Note thaf the cost H ( f )  is. 
roughly. pmporrional to ISXI. the area 
of t h e  domain of f .  

Figure 4. Elastitic matching with a large 
padding of white pixels. Except for the 
value of m which is now 5 instead of 1. 
the situation is identical to that of figure 
3. Costs are 1444 (panel A) and 198 
(panel B). Note that even in the suong- 
deformation case large ponians of the 
padding are mapped ngidly. 

from numeral ‘3’ to numeral ‘8’ effects a relatively moderate distortion, and hence is only 
mildly penalized by H, whereas the optimal map from numeral ‘8’ to numeral ‘3’ incurs, as 
expected, a much higher cost. It is the latter that determines the distance p between these 
two numerals; this distance is high, as required. 

4. Classification experiments 

This section reports on classification experiments that were carried out to assess the adequacy 
of both the distance p and the optimization procedure described in section 3. We used a 
database of 1200 handwritten numerals, 120 per class, each a binary-valued image of size 
16x 16 (courtesy of I Guyon, AT&T Bell Labs). A sample of these images is shown in figure 
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Figure 5. Elastic matching in the subset 
cae .  Mapping B numeral '3' On a 
numeral '8' (panel A) requires little 
deformation. as the former is a new 
subset of the latter. Resulting cast is 
H ( / )  = 75. In contrast. mapping the 'R' 
on the '3' (panel B) entails considerable 
deformation (note far instance how the 
bottom circle of the '8' collapses onto 
the bottom leg of the '3'). resulting 
in a cost of 302, Ry definition. the 
(approximated) elastic-matching distance 
between these two numerals is the largest 
of the two vnlues: LL = 302. 

6. Note that the numerals are normalized, so that their actual size (the size of the minimum 
enclosing rectangle) is 16 x 16 (except, for obvious reasons, for numeral '1').  These data 
were assembled by asking each of twelve individuals to  produce IO numerals of each class, 
following a given pattern. The shapes of these handwritten digits are therefore relatively 
uniform within a given class, and the recognition problem for this database is easier than for 
most currently used zip-code databases (e.g. Simard etal 1993). No further preprocessing or 
feature extraction was applied to the data, except for thinning the characters, as mentioned 
above. 

Figure 6. A sample of the 1200 hmdwetten numerals used in the classification expe"ments 
(courtesy of I Guyan). 

The experiments reported in this section consist in using, in a non-parametric 
classification scheme, the elastic-matching metric @ defined in section 2-more accurately 
the approximated p given by the update algorithm described in section 3-instead of the 
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usual pixelwise Hamming distance. We performed experiments using k-nearest-neighbour 
(k-NN) classification with various values of k ,  as well as kernel classification (Panen 
windows) with various kernel bandwidths U. Classification performances were found to be 
very similar for the two methods, and, within certain limits, independent of the ‘smoothing 
parameter’ (k or U as the case may be). Here we shall report only on k-NN classification 
with k = 1. Results of experiments with k varying from 1 to 20 are briefly reported in 
Geman eta1 (1992) (see~figure 17 there). 

The default setting, which we shall use unless otherwise stat@, is as follows: numerals 
are thinned; m, the width of the padding of white pixels around each numeral, is set equal 
to 1; K ,  the weight of the injectivity constraint in the cost functional X is set equal to 2; 
the number of iterations in the optimization process is 0 (which means that we do apply the 
elastic-update scheme once to most of the sites in the domain of the function). 

In all cases, we report on generalization error: the database of 1200 numerals is divided 
into two disjoint sets L and T (the partition is uniform~across classes, but random vis-&vis 
writers). L is used for ‘training’ (leaming), T for ‘testing’. There is of course no training 
in the strict sense here. Rather, numerals in L are used as prototypes; thus, in first-nearest- 
neighbour classification, the class of a numeral X E T is simply the class of that numeral 
X’ E L such that VX” EL,  p(X, X’) < p(X, X”). In order to achieve a robust estimate of 
error rates, lo00 different random partitions of the data base into two sets L and T were 
used; the error rate reported is the result of averaging over these 1000 partitions. 

Figure 7 shows the error rate as a function of the total size of the haining set L.  As 
mentioned, the elastic distance is approximated by using only iteration 0 of the optimization 
process. Three curves are shown, for three different values of the padding width m. The 

I --. 

no rm 60) m Irm no rm 60) m Irm 

size of training set 

Figure 7. Percent ermr (generalization) as a function of total training-set size, with various 
padding widths m. Fint-nearest-neighbour classification is performed with the elasticmatching 
metric. Each point is an average mor rate over 1000 random partitions of the database into 
a training set L and a test set T .  Results with m = 0 and m = 1 are hardly distinguishable. 
Performance degrades slightly with m = 3. 
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curve with m = 1 shows for instance that with 500 randomly chosen prototypes (that is, 
50 prototypes per class), the error rate is about 0.3%. It falls off to a value of about 
0.17% x 2/1200 when ILI approaches 1200. This is due to the presence of exactly two 
numerals whose first-nearest neighbours in the whole data base are of the ‘wrong’ class. 
Figure 7 also shows that performance is fairly insensitive to the presence or width of the 
padding. 

Figure 8 illustrates the influence of K ,  the relative weight of the iujectivity term in 
the cost functional H. Including this term significantly improves the performance of the 
classifier, by a factor of about 3. On the other hand, the magnitude of K does not appear 
to be crucial, as long as K is neither too small (the effect of the second term would be 
negligible) nor too large (this would result in ‘hardening’ the injectivity constraint, which 
clearly is undesirable). 

What is the effect of pursuing the optimization, rather than halting it after the 
initialization pass (‘iteration O’)? Figure 9 shows that the improvement of performance with 
additional iterations is not very significant. Note that increasing the number of iterations 
beyond 5 does not bring any improvement at all; in effect, the update algorithm generally 
has converged by iteration 5 .  This is illustrated in figure 10, which shows the evolution of 
average inter- and intra-class approximated distances as a function of iteration number. 

Experiments were also performed with different seeds for the random-number generator 
that determines the site-visitation sequence; the resulting variation of error rate was of the 
order of 0.1%. These data, along with the results shown in figure 9, may be taken as an 
indication of the robustness of our estimate of p; they suggest that this approximated elastic 
distance probably yields essentially as good a classification as one would obtain were the 
true elastic distance p available. 

Experiments with non-thinned numerals resulted in performances essentially uudistin- 
guishable from results obtained with the thinned characters (differences in error rates did 
not exceed 0.1%). The advantage of thinning is a gain in computation time, as it reduces 
I SX I by a factor sometimes as large as 3. 

Finally, figure 11 compares the performance of our elastic-matching classifier with a 
few simple non-parametric techniques. Of particular interest is the comparison with first- 
nearest-neighbour classification using pixelwise Hamming distance. This comparison shows 
that substituting the metric p for Hamming distance results in a very significant drop of 
error rate, generally by a factor of more than 10. Note also the significant improvement over 
results obtained with various simple feedforward neural networks (data points from Guyon 
1988). Feedforward neural networks introduce no other bias than smoothing with respect to 
the natural distance in input space. In this sense, they function essentially as non-parametric 
classifiers used with Hamming distance; they indeed yield comparable performances. See 
Geman et al (1992) for a more extensive discussion of this issue, as well as a comparison 
of the elastic-matching classifier with a backpropagation network including from 1 to 25 
hidden units (see figure 17 there). 

To summarize, using the elastic-matching metric results in very substantial improvement 
over methods relying explicitly (nearest-neighbour or Parzen-window classifiers) or 
implicitly (simple feedforward neural networks) on pixelwise distance. 

5. Related work 

Various forms of elastic matching for the recognition of handwritten numerals or other 
line drawings have been proposed in the past, generally independently of any biological 
consideration; see e.g. Burr (1980) and Tappert (1982). Of particular interest is the approach 
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I . . . . , . . , . . .  
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size of  training set 

25 1 

Figure 8. Influence of the injectivity constraint on classification performance. Including the H2 
term (U = 2 or Y = 4) results in substantial improvement over the performance achieved with 
the sole HI 'elastic' term. 

size of training set 

Figure 9. Influence of number of iterations (N) of the cost-minimization algorithm. The upper 
cuwe (N = 0) shows the emor rate when optimiation, in the computation of fi, is halted 
afler the 'initialization' pass. The lower curve (N 2 5 )  shows the mor rate when the update 
algorithm is allowed Io converge, which requires, in nearly all cases, at most five iterations. 
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number of iterations 
Figure 10. Average dismce p as a function of iteration number N. Panel A (resp. B) shows the 
distance W e e n  class '6' (ESP. '1') and PI 10 numeral classes. These distances are averaged 
over dl numerals in the two classes concerned (for instance class '8' and class '1' for the upper 
c w e  in panel B). The x-axis indicates the number of iterations (N) of the optimization process 
used fo compute the estimated value of p. Although this value decreases in the first iterations, 
it does so fairly un$ormly over class pairs, which makes classification relatively insensitive to 
N (figure 9). 

investigated by Hinton ei a1 (1992). These authors model a given numeral as a deformable 
spline, whose shape is determined by the positions of eight control points. These control 
points have home locutions (adjustable by a learning procedure) that define an 'ideal' shape 
for the given character. The elastic matching between the image of an unknown numeral 
and the deformable spline is performed by an iterative procedure which includes, as an 
important step, the balancing of two types of forces acting on the eight control points: data 
forces that pull the control points towards black pixels in the image, and elastic forces that 
pull the points back to their home locations in the model; in the probabilistic setting used 
by Hinton et al. this step requires the inversion of a 16 x 16 matrix at every iteration. 
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size of training set 

Figure 11. Elasticmatching classification versus Hamming-distance classification. The two 
curves represent averaged generalizationbenor rates (over 1000~ phtions of the database) 
obtained by first-nearest-neighbour classification. using one of two alternative metrics: pixel- 
by-pixel Hamming distance (upper curve), or approximated elastic-matching distance p (lower 
curve). The ratio between the two is in all wses larger than 10. Also indicated (E” Guyon 
(1988)) are generalization-error rates obtained with various feedfonvard neural networks, on the 
s a c  data base (single parrition, [Ll = /TI = 600). From top to bottom: no hidden layer. 
pseudo-inverse training rule; one hidden layer, backpqagation training rule; no hidden layer, 
delta-rule; no hidden layer, delta-rule, preprocessed data (99 exvacted features). 

The approach of Hinton et a1 bears strong resemblance to ours. It also uses a cost, 
or ‘energy’, function, to measnre the amount of deformation effected on a character; 
this function includes an elastic deformation term, as well as a pixel-value term-in our 
approach, the latter is embodied in the hard constraint f E Pxx,. One important difference 
is that the deformable-spline approach uses a higher-level description: the model of a given 
numeral is entirely specified by 24 parameters (16 coordinates and 8 variances). This makes 
it a reasonable strategy to use a single model to account for all the variability encountered 
in each of the ten numeral classes. In contrast, our approach requires several exemplars 
for each numeral class (although not nearly as many as figure 7 would suggest-see below, 
section 6). The price paid in the deformablespline approach is of course the rather heavy 
computation required to fit the data to the model. One advantage of this approach is that 
it lends itself rather naturally to the incorporation of noise models; it also affords total 
invariance with respect to substantial affine transformations, which our model does not (our 
data are normalized in size). However, this also comes at a computational price, since each 
iteration in the elastic-matching procedure includes the recomputation of the best affine 
transform between the image and an ‘object-based frame’. 

Note that full invariance to affine transformations is-actually nor a desirable feature for a 
character-recognition algorithm. The spread of parameters such as tilt and elongation within 
a given numeral class is indeed limited. Therefore, a matching algorithm that would attempt 
to perform the match under an excessively lakge domain of parameters would likely be less 
efficient, e.g. be prone to local energy minima; in an extreme situation, it may lead to the 
recognition of a ‘6‘ as a ‘9’. To address this problem in the deformable-spline approach, it 
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would probably be necessary to include additional terms in the energy function, in order to 
penalize large rotations or deformations. In contrast, our much simpler approach penalizes 
in a natural way all affine transformations except shifts, in an’amount proportional to the 
magnitude of the deformation. The results reported by us and by Hinton et al (1992) do 
not make it possible at this point to judge which strategy is better adapted to the specific 
problem of handwritten-character recognition. 

Another approach to handwritten-character recognition that calls for a comparison with 
ours is the one recently proposed by Simard et ai (1993). Although these authors do not use 
an elastic-matching distance in the s ~ c t  sense, the spirit of their work is, in part, similar to 
ours. They propose to replace Euclidean distance by a ‘tangent distance’ better suited to the 
task at hand, and to use this alternative metric for nearest-neighbour classification. Simard 
et al use grey-level images; their tangent distance D is designed to be locally invariant, in 
the 256-dimensional image space, to a number of standard transformations E translation, 
rotation, scaling, shearing, squeezing, and line thickening or squeezing. Given two images 
X and X‘,  D(X,  X’)  is obtained by considering the manifold M x  of all I-transforms of 
X, and the manifold M x .  of all 7-transforms of X’; D(X,  X’) is the Euclidean distance 
between the hyperplane tangent to Mx at X and the hyperplane tangent to Mxr at X’. 
Simard et a1 report very low error rates when using tangent distance for the classification 
of large databases of handwritten digits. 

Our method appears, at first sight, to be somewhat more effective computationally. As 
a rough indication, it requires about 6000 multiply adds-sometimes significantly less- 
to perform one match between two normalized digits of size 16 x 16; compare with the 
figure n(mE + l ) ( m p  -I- 1) + 3(m; +ma), with n = 256 and m~ = m p  = 7 ,  of Simard 
et al (1993). A direct comparison, however, may be misleading, since we use binary- 
valued images, which contain significantly less information. An adaptation of our approach 
to grey-level images would necessitate a third term in the cost functional, to embody a 
suitable set of pixel-value constraints; this may make the algorithm significantly more 
computation-intensive. One possible advantage of our approach is that it handles all mbber- 
sheet deformations, which may be highly nonlinear. In contrast, the metric used by Simard 
et al is designed to be invariant to a standard set of transformations, applied uniformly 
throughout the image. It is not clear, however, how significant this difference may be for 
the problem of handwritten-digit recognition. 

It would be interesting to assess the performance of our algorithm on larger databases 
of handwritten characters or numerals, and compare it more accurately with the approaches 
mentioned above, as well as with feedforward neural networks with shift-invariance 
constraints on the weights (Le Cun et a1 1989). Our simple and general approach, designed 
in the spirit of biological modelling, may well turn out to be less efficient than techniques 
specifically designed to optimally recognize handwritten characters. The model presented 
in this paper-using the same elastic cost HI-has also been applied to the recognition of 
shapes very different from numerals, e.g. images of human faces (Buhmann et al 1989, 
Wiirtz et a1 1991, Lades et al 1993); in this application, images are pretreated by a family 
of ‘Gabor-based‘ wavelet transforms, and a soft-constraint data term is used rather than a 
hard constraint of the type f E Pxp. 

6. Summary and discussion 

This paper proposes a model of shape recognition with a specific biological motivation, 
namely to illustrate on a concrete problem the capabilities of the dynamic-link approach to 
brain function (von der Malsburg 1981, 1987, von der Malsburg and Bienenstock 1986). 

E Bienemtock and R Doursat 
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Our simple elastic-matching formulation retains the spirit of the biological model-a map 
f from an image X to an image X’ is a collection of dynamical links-but adapts it 
to the computational requirements of’the application. Thus, the quality of the map f is 
assessed through an elastic cost functional H ( f ) ,  and an elastic-matching distance p(X ,  X’) 
is defined by minimizing H over a suitably defined collection of maps Pxx,. 

We presented a computationally effective procedure for finding a reliable estimate 
of p(X ,  XI). In experiments performed on a database of 1200 handwritten numerals, 
substituting the metric p for Hamming distance in nearest-neighbour classification yielded 
substantial improvement (figure 11). Also, the performance of elastic-distance classification 
compared favorably with the performance reached on the same problem by simple 
feedforward neural networks. The implementation of this approach on parallel computing 
machinery (see e.g. Wiirtz et a1 1990) may make it possible in the future to envisage 
realizations that come closer to the underlying biological model. 

No effort was made in our work to optimize the speed of the classification proper. Two 
straightforward improvements would be: (a) effecting a prejltering, by means a faster but 
less powerful classification technique, and (b) using a more parsimonious prototype set. 
The use of a rundom prototype set for first-nearest-neighbour classification is indeed very 
inefficient, as such a set contains many redundant exemplars. We have briefly experimented 
with a greedy algorithm designed to reduce the size of the exemplar set without increasing 
the classification error rate, as assessed on a given test set; these experiments (not reported 
in the present paper) confirm that considerable improvement is possible. 

In the context of non-parametric classification, the import of our elastic-matching 
distance or of other, tailor-made, distances such as proposed by Simard et a1 (1993) can 
be usefully discussed in the perspective of the biadvariance dilemma for non-parametric 
estimation (see e.g. Geman et a1 1’992). Recall that the bias is the deviation of the average 
estimator from the theoretically optimal one, while the variance is its intrinsic variability: 
the stochasticity giving rise to these two terms is that of the training data, which obeys a 
given, unknown, probability distribution. The term ‘dilemma’ refers to the fact that it is 
difficult to improve the performance of a classifier by reducing both bias and variance in 
a fully general way, that is, independently of the problem considered. The way out of this 
dilemma, which brains must have adopted, is in the devising of appropriate problem-specific 
biases, which reduce the variance term without appreciably increasing the bias component, 
in a given problem. 

Substituting the.matching distance p for pixelwise Hamming distance may be viewed 
as a way to introduce a problem-specific bias. In effect, consider generating various images 
X’ from a given image X by flipping the values of n distinct pixels. The Hamming distance 
between X and X’ is always n, whereas p ( X , X ’ )  will depend on the position of the 
pixels affected by the change. Specifically, p(X, X’) will be small if there is a low-H 
map in PXX, as well as a low-H map in PXSX. This particular bias is well-suited to the 
problem at hand we know beforeliand, that is, before we are shown any examplars, that 
numerals related to each other through a moderate distortion are likely to belong to the same 
class. Therefore, introducing this bias a priori in the classifier results in better performance. 
In this perspective, the fact that the performance of the classifier hardly improves when 
optimization is pursued beyond iteration 0 may be interpreted by saying that iteration 0 
introduces essentially all of the desired bias. Similarly, Simard et a1 (1993) report that 
the use of an approximated tangent distance (see above, section 5 )  results in no loss of 
classification performance. 

Consider now the issue of neural mechanisms. As in statistical estimation or regression, 
unbiased computation would really mean that the only bias introduced is smoothness with 
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respect to the natural topology of the input space. An example of unbiased neural machinery 
might be a multilayer perceptron (MLP), assuming real brains indeed implement MLP-lie 
networks: MLPS interpolate between training data smoothly with respect to the natural 
topology of the input space. 

Biases can be introduced in MLPS by imposing constraints on the architecture andor 
synaptic weights (Le Cun et ai 1989). The dynamical-link approach underlying the present 
work suggests that a very different kind of bias may be present in lhing brains. Such a 
bias would rely on an operation of matching characterized by the construction of a relation- 
preserving dynamical map. Such a map differs from the map implemented by an MLP 
in two important ways: (i) there are no well-defined 'input' and 'output' spaces; rather, 
the map establishes a correspondence between two spaces of similar nature, both high- 
dimensional and containing relationally structured objects; (ii) the map is dymicu l ,  that 
is, the very process of computation consists in the establishment of the map or in the failure 
to establish it. It has been suggested (von der Malsburg 1981, 1987, von der Malsburg 
and Bienenstock 1986) that brains may be equipped with a mechanism specialized in the 
building of dynamical structure-preserving maps: this mechanism could be a fast-enough 
form of Hebbian plasticity, sensitive to accurate temporal relationships between the firings 
of different neurons. The brain would then perform interpolation in a space of maps rather 
than in a space of sensory inputs. This would allow to introduce biases better-suited to 
handling various types of invariances,=as may be pertinent in perception or in other domains 
of cognition. (For a further discussion of neural implications, see references above.) 

In general, matching problems are bard, if not intractable. Thus, subgraph isomorphism 
is an NP-complete problem (Garey and Johnson 1979). The experiments presented in this 
paper show that satisfactory matches can be obtained reliably and rapidly (as measured by 
the number of parallel iterations) provided two general conditions are met: (i) the objects 
to be matched should be topologically structured, and (ii) initial conditions should provide 
a rough guess of the map to be constructed. It may be the case that these conditions are 
reasonably well satisfied in all instances of cognitive tasks-from perception and motor 
command to linguistic behaviour-that lend themselves to a description in terms of the 
computation of relation-preserving dynamical maps. 

E Bienenstock and R Doursat 

Appendix 

Here we discuss in more detail the algorithm for finding a suboptimal match outlined in 
section 3. For any f E 'PxxT, for any s E SX and for any s' E S such that X'(s') = X ( s ) ,  
define the map y' in ' P x ,  as follows: 

if t = s. 
f"'(t) = 

Given f E Pxx,, updating f at a given site s E SX means finding a site U E S that is 
optimal given f on all sites other than s, that is, X'(u) = X ( s )  and H(fSU) 4 H ( y ' )  for 
all s' E S such that X'(s') = X ( s )  (note that U is not always uniquely defined). 

Let V, be the set of sites t E SX at distance 1 from s. The size of V,, I VJ, is 4 i f s  is 
an interior point of Sx, less if it is a boundary point. Define 

If s is an interior point of SX, hence &,, f ( t ) .  the centre of 
mass of the four points f ( t ) ,  t E V,. The site d is mdily seen to be optimal with respect 

= 4, S simplifies to 
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to the ‘elastic’ component of the cost, H I .  We use I for finding the optimal site U ,  as 
follows. We wish to evaluate, for any site s’ E S such that X’(s’) = X(s),  the total change 
in H = HI + Hz resulting from moving f(s) from a given site so to site s’. This change 
is easily seen to be given by the following expression: 

g(S’) = H ( f S s ’ )  - H ( f S S o )  = IKlX 11 S‘ - i 11’ +K (2If-’(S’)l - I)+ f D (A21 

where D is a constant depending on SO but independent of s‘. (A convenient choice of so 
is so = S.) The optimal U is then the site s‘ in S that minimizes g under the constraint 
X’(s‘) = X ( s )  (or one of the minimizers if there are several). 

An efficient search method for K is as follows. Visit all sites s’ in S that satisfy 
X’(s’) = X ( s )  in order of increasing distance from j .  (This order is not always uniquely 
defined; which order is used may determine which minimizer of g is found, if there are 
several.) For each site s’ visited, ask whether g(s’) is smaller than the smallest value of 
g encountered so far. If so, provisionally mark s‘ as a candidate optimal site, and retain 
g(s‘) as the current minimal value of g. As soon as a point s’ is reached such that the H I -  
component of g(s‘), that is, IV,/x 11 S‘ - S ]]*, is, by ifseIf, larger than the current smallest 
value of g ,  discontinue the search and define U to be the site s‘ with lowest g(s’) found. 

Note that when we use this update scheme in iteration 0, that is, when we extend the 
definition of f to all of S, after having defined it by alignment on the first q black pixels 
(section 3). it is actually a first assignment that we are making rather than an update; V, 
in equations (AI) and (A2) should then be understood as the set of all neighbours of s for 
which f has nlreudy been defined, rather than the whole set of neighbours of s in S,. Thus, 
in order for the initialization procedure to be applicable, any site s E SX to be ‘updated’ has 
to have at least one neighbour t E SX for which f ( t )  has already been assigned: either t is 
one of the initial q black sites, or f(f)  has itself already been ‘updated’. The site-visitation 
ordering s,+l, . . . , sls,l of~the set SX- {SI, . . . , sp) is therefore random up to the requirement 
that for all i ,  4 i < ISX/, there exist at least one j < i such that /I sj -si [(= 1. 
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